Attachment C

Wetland Delineation Report

Engineering & Design

Wetland Delineation Report

Intel Project Slice

Colliers Engineering & Design Project Number: 22011510A

December 9, 2022

Prepared for:

NiSource Inc. 801 E. 86th Avenue Merrillville, IN 46410 Prepared by:

Colliers Engineering & Design, Inc. 1501 Reedsdale Street, Suite 302 Pittsburgh, PA 15233 Main: 412-618-5390 **Colliersengineering.com**

Table of Contents

EXE	CUTIVE SUMMARY	1
1.0	PROJECT INFORMATION	2
2.0	INTRODUCTION	3
3.0	PROPERTY DESCRIPTION	4
4.0	BACKGROUND INFORMATION	5
4.1	U.S. Geological Survey Map	5
4.2	Soil Survey	5
5.0	WETLAND & SURFACE WATER DELINEATION METHODOLOGY	7
5.0 6.0		
	WETLAND AND SURFACE WATER DELINEATION RESULTS	8
6.0	WETLAND AND SURFACE WATER DELINEATION RESULTS	8
6.0 6.1 6.2 6.3	WETLAND AND SURFACE WATER DELINEATION RESULTS	8
6.0 6.1 6.2 6.3	WETLAND AND SURFACE WATER DELINEATION RESULTS	8
6.0 6.1 6.2 6.3 6.4	WETLAND AND SURFACE WATER DELINEATION RESULTS	8 8 8 9

APPENDICES

APPENDIX A	-	FIGURES
APPENDIX B	-	DATA FORMS
APPENDIX C	-	USACE ANTECEDENT PRECIPITATION TOOL
APPENDIX D	-	PHOTOGRAPHS

EXECUTIVE SUMMARY

On behalf of NiSource Inc., Colliers Engineering & Design (CED) conducted field delineations for the Intel Project Slice within Franklin, Delaware, and Licking Counties, Ohio (hereinafter described as "Project Study Area"). The Project Study Area or "Survey Corridor" begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and ends at latitudinal coordinates 40.118155 N and longitudinal coordinates -82.722537 W. The Project Study Area is located approximately 18 miles northeast of Columbus, Ohio. Access to the Project Study Area can be achieved from Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW.

The Project Study Area is comprised of a 100-foot wide survey corridor centered on the proposed pipeline alignment for 4.15 miles. The Project Study Area begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and ends at latitudinal coordinates 40.118155 N and longitudinal coordinates -82.722537 W. The Project Study Area was investigated to identify potential jurisdictional Waters of the U.S. (WOTUS) and wetlands subject to Federal or State regulatory jurisdiction. The delineation methodologies developed by the USACE and the USEPA, as described in the *1987 Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1* and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0)* and the subsequently issued USACE regulatory guidance regarding the identification of jurisdictional stream channels through the recognition of field indicators of an ordinary high-water mark within drainage features (Environmental Laboratory, 1987; USACE 2012; USACE 2005) were utilized during our investigation.

Based on the field investigations, two (2) wetland features and two (2) stream features were delineated within the Project Study Area by CED on November 10th, 2022 and December 6th, 2022. A total of 0.88 acres of palustrine forested (PFO) wetland, 0.18 acres of palustrine emergent (PEM) wetland, 132 linear feet of perennial (R3) stream, and 1,170 linear of intermittent (R4) stream were delineated. It is CED's professional opinion that these wetland and stream features are considered jurisdictional WOTUS since they are or either drain to Duncan Creek and Blacklick Creek. These stream and wetland features can be considered jurisdictional WOTUS since they connect and/or are directly connected to Duncan Creek and Blacklick Creek. The location and size of jurisdictional areas delineated are shown on Figure 5. Wetland Determination Map (**Appendix A**).

1.0 PROJECT INFORMATION

Project Name	Intel Project Slice
Project Location	Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road
	NW
Municipality	New Albany
County	Franklin, Delaware, Licking
State	Ohio
Latitude/Longitude	40.139550 N / -82.760981 W to 40.118155 N / -82.722537 W
Project Study Area Size	+/- 4.15 mi
U.S.G.S. Quadrangle	Jersey, New Albany, and Sunbury OH
Potential Jurisdictional	See Aquatic Resource Area Summary Table on Page 11
Waters of the U.S. (WOTUS)	
and wetlands	
River Basin (HUC) & sub-	Upper Scioto Basin: 8 Digit HUC Code: 0504006 Licking River Basin
watershed	
Nearest Stream	Duncan Run and Blacklick Creek
Navigable Water Nexus	Stream features delineated on the Project Study Area would be
	considered jurisdictional WOTUS and wetlands since these features
	drain towards Duncan Run and Blacklick Creek
Isolated Wetlands/Waters	Yes
Present (Yes/No)	

2.0 INTRODUCTION

On behalf of NiSource Inc., Colliers Engineering & Design (CED) conducted field delineations for the Intel Project Slice located along Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW within Franklin, Delaware, and Licking Counties, Ohio (hereinafter described as "Project Study Area"). The Project Study Area begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and end at latitudinal coordinates 40.118155 N and longitudinal coordinates -82.722537 W. The Project Study Area is located approximately 18 miles northeast of Columbus, Ohio. Access to the Project Study Area can be achieved from Tippet Road, Johnstown Utica Road NW, and Miller Road NW. The Project Study Area is bordered by residential homes, agricultural areas, and forested areas.

The Project Study Area was investigated to identify potential jurisdictional Waters of the U.S. (WOTUS) and wetlands subject to Federal or State regulatory jurisdiction. According to the U.S. Army Corps of Engineers (USACE) and U.S. Environmental Protection Agency (USEPA) regulations described in Section 404 of the Clean Water Act (33 CFR Section 328.3 and 40 CFR Section 230.3) respectively, wetlands are "...areas that are inundated or saturated with surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions."

3.0 PROPERTY DESCRIPTION

The Project Study Area is located within the Licking River Basin (8 Digit HUC Code 05040006). Access to the Project Study Area can be achieved from Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW. The western section of the Project Study Area drains west towards Blacklick Creek, and the eastern section of the Project Study Area drains north (Duncan Creek). The Project Study Area does contain a floodplain according to FEMA Floodplain Panel Maps 39089C0120H, 39089C0280H, and 39089C0257H (eff. 5/2/2007). The Project Study Area contains approximately 10% forested communities and 90% agricultural land. The forested areas are comprised of a mixture of oak, tulip poplar, red maple, pine, and sweetgum species that dominate the canopy layer. Duncan Creek is located in the eastern section of the Project Study Area, flowing south to north. The unnamed tributary located in the western section drains to Blacklick Creek.

4.0 BACKGROUND INFORMATION

Prior to on-site field investigations, several publicly available sources of information were reviewed to determine the likelihood of wetlands and surface waters occurring within Project Study Area. These mapping resources generally include, but are not limited to, the United States Geological Survey (USGS) maps (Figure 1. Project Location Map, **Appendix A**), the U.S. Department of Agriculture - Natural Resource Conservation Service (NRCS) soils database (Figure 2. Soil Series Map, **Appendix A**), National Hydrography Dataset (NHD), and the U.S. Fish & Wildlife Service National Wetlands Inventory (NWI) database (Figure 3. National Wetlands Inventory Series, **Appendix A**).

4.1 U.S. GEOLOGICAL SURVEY MAP

The Project Study Area appears on the *Jersey, New Albany, and Sunbury* Quadrangle USGS Maps (Figure 1. Project Location Map, **Appendix A**) and is depicted as developed properties which contain approximately 10% forested areas habitat communities and 90% agricultural land. Residential and forested areas are located within the vicinity of the Project Study Area to the north, south, east, and west. Elevations at the Project Study Area range from 1150 to 1200 feet above mean sea level (MSL) based on the USGS map.

4.2 SOIL SURVEY

The NRCS Web Soil Survey depicts the following five (5) Soil Series map units within the Project Study Area and provides a description of the properties and qualities of each soil:

Map Unit Symbol	Map Unit Name	Drainage Class	Runoff Class	Depth to Water Table
BeA	Bennington silt loam, 0 to 2 percent slopes	Somewhat Poorly Drained	High	About 6 to 12 inches
BeB	Bennington silt loam, 2 to 6 percent slopes	Somewhat Poorly Drained	High	About 6 to 12 inches
PwA	Pewamo silty clay loam, 0 to 1 percent slopes	Very Poorly drained	Negligible	About 0 to 12 inches
Pe	Pewamo silty clay loam, low carbonate till, 0 to 2 percent slopes	Very Poorly Drained	Negligible	About 0 to 12 inches
Pm	Pewamo silt clay loam, low carbonate till, 0 to 2 percent slopes	Very Poorly drained	Negligible	About 0 to 12 inches

Table 1. NRCS Soil Mapping Units for Intel Project Slice

Of the five (5) mapped soil units, all are listed as being hydric. Hydric soils are described as most likely to contain wetlands primarily due to the shallow seasonal high-water table.

5.0 WETLAND & SURFACE WATER DELINEATION METHODOLOGY

The wetland delineation methodologies developed by the USACE and the USEPA, as described in the 1987 Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1 and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: *Midwest Region* (Version 2.0) and subsequently issued USACE regulatory guidance regarding the identification of jurisdictional stream channels through the recognition of field indicators of an ordinary high-water mark within drainage features (Environmental Laboratory, 1987; USACE 2012; USACE 2005), were utilized during our investigation. These methodologies generally involve the review of three parameters (vegetation, soils, hydrology) when making a wetland or non-wetland determination.

The Project Study Area was walked, community types were characterized, and wetland and surface water boundaries were flagged. Sample stations were established along the boundaries to examine vegetation, soils, and hydrology. Using this data, boundaries were established based on changes in vegetation, soils, hydrology, and surface water characteristics.

6.0 WETLAND AND SURFACE WATER DELINEATION RESULTS

6.1 WETLAND AND SURFACE WATER SUMMARY

On-site field investigations of the Project Study Area were conducted by CED on November 10th, 2022 and December 6th, 2022. The on-site delineation did verify that there are potential jurisdictional wetlands and surface waters within Project Study Area. A summary of the aquatic resources identified within the Project Study Area is provided below in Table 2: Aquatic Resource Summary. The aquatic resources were delineated as shown on Figure 5. Delineation Results (**Appendix A**). Data forms supporting the delineation are located in **Appendix B**.

Aquatic Resource	PFO Area (AC)	PEM Area (AC)	Aquatic Resource	R3 Length (LF)	R4 Length (LF)
Wetland 1		0.18	Stream1	59	1170
Wetland 2	0.88		Stream 2	73	-
Total Wetlands by Class (AC)	0.88	0.18	Total Stream by Class (LF)	132	1170
Total Wetlands (AC)	1	.06	Total Stream (LF)	130	2

Table 2: Aquatic Resource Area Summary Table

Note 1: Cowardin Classification; PFO = palustrine forested wetland; PEM = palustrine emergent wetland; PUB = palustrine unconsolidated bottom (pond), R3 = perennial stream, R4 = intermittent stream

6.2 VEGETATION

Representative plant species within the wetland areas include the following: sweetgum (*Liquidambar styraciflua*), quaking aspen (*Populus tremuloides*), red maple (*Acer rubrum*), winterberry (*Ilex verticillata*), hairy willowherb (*Epilobium hirsutum*), blue vervain (*Verbena hastata*), and reed canary grass (*Phalaris arundinacea*).

Representative plant species within the upland areas include the following: johnson grass (*Sorghum halepense*) and corn (*Zea mays*).

6.3 SOILS

Hydric soils are defined as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil (USDA 2003). The soils in the wetland areas were variable, but for the most part, exhibited low chroma matrices with redoximorphic features. Soils within the wetland areas on-site exhibit low chroma matrix colors and concentrations that are characteristic of reducing anaerobic conditions associated within the formation of hydric soils. Wetland soils were typically black (10YR 2/1) with yellow (7.5YR 5/6) within the upper 16 inches. Jurisdictional soils were generally underlain black (10YR 2/1) with yellow (7.5YR 5/6) down to 16 inches. Soils within jurisdictional areas meet the F3 Depleted Matrix hydric soil indicator. Textures within the jurisdictional areas include clay and loam. The upland soils within each area varied from light yellowish brown (10YR 6/4), yellowish brown (10YR 5/6), and very dark grayish brown (10YR 3/2), within the upper 16 inches. Soil textures include clay and loam.

6.4 HYDROLOGY

On-site field investigations of the Project Study Area were conducted by CED on November 10th, 2022. Indicators of hydrology present in the delineated wetlands, include, but are not limited to, drainage patterns, saturation at the surface, and geomorphic position. The USACE Antecedent Precipitation Tool (APT) was utilized for the Project Study Area and is provided **Appendix C**. Based on the USACE APT tool, the on-site field investigations were conducted in "Drier than Normal" precipitation conditions with a 30-day rolling total.

Indicators of wetland hydrology are largely absent in upland areas.

7.0 WETLAND DELINEATION CONCLUSION

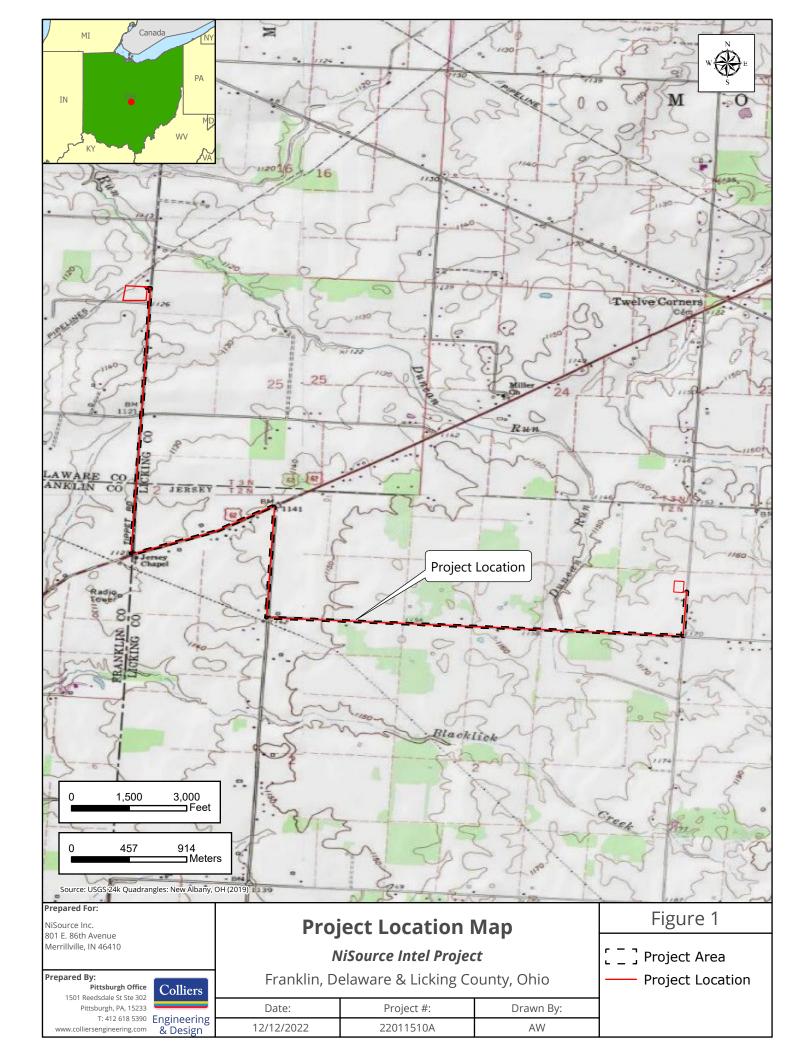
Two (2) wetland features and two (2) stream features were delineated within the Project Study Area by CED on November 10th, 2022 and December 6th, 2022. A total of 0.88 acres of palustrine forested (PFO) wetland, 0.18 acres of palustrine emergent (PEM) wetland, 132 linear feet of perennial (R3) stream, and 1,170 linear of intermittent (R4) stream were delineated.

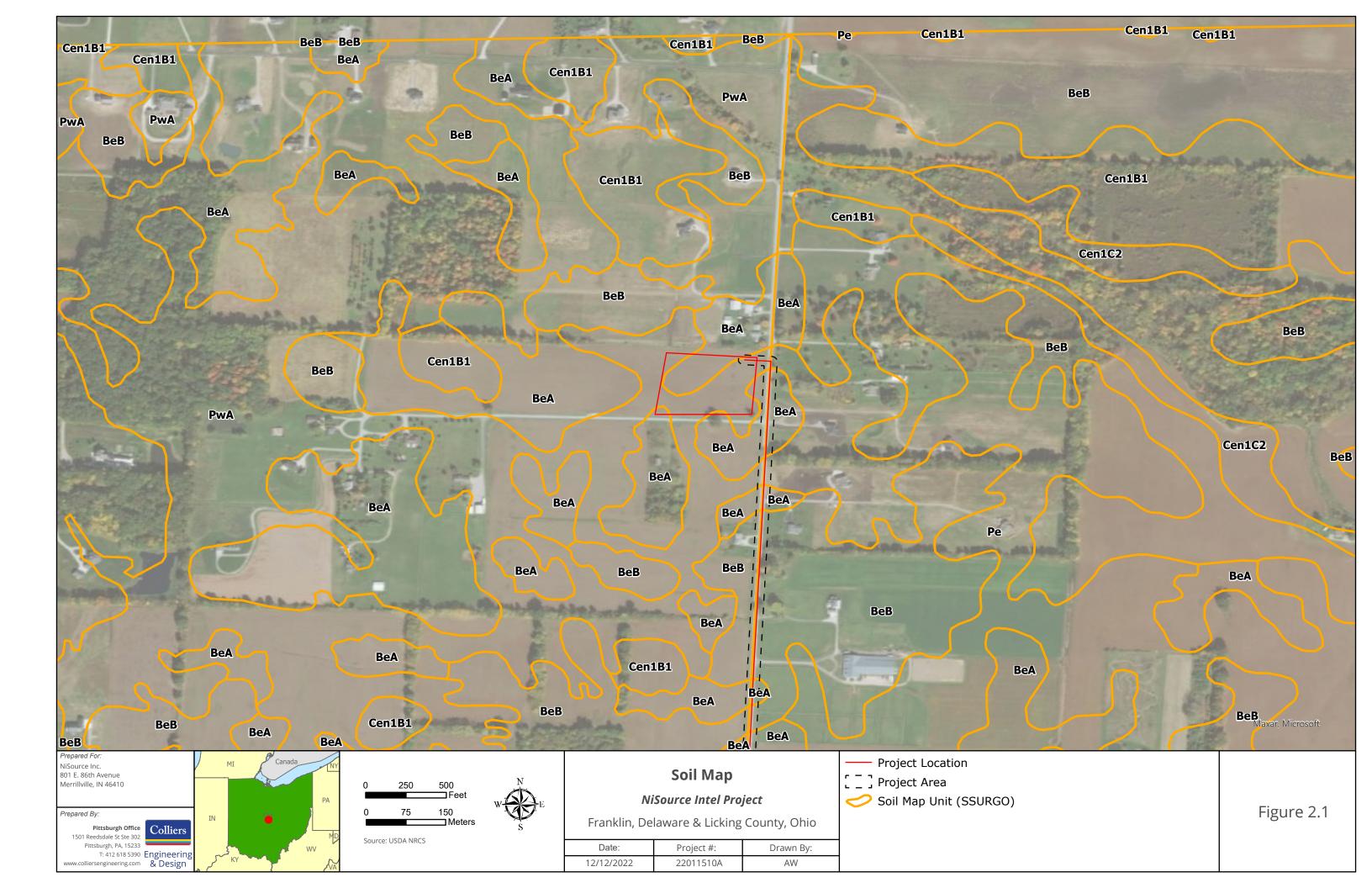
It is CED's professional opinion that these wetland and stream features are considered jurisdictional WOTUS since they are or drain to Duncan Creek and Blacklick Creek. These stream and wetland features can be considered jurisdictional WOTUS since they connect and/or are directly connected to Duncan Creek and Blacklick Creek. The location and size of jurisdictional areas delineated are shown on Figure 5. Wetland Determination Map (**Appendix A**).

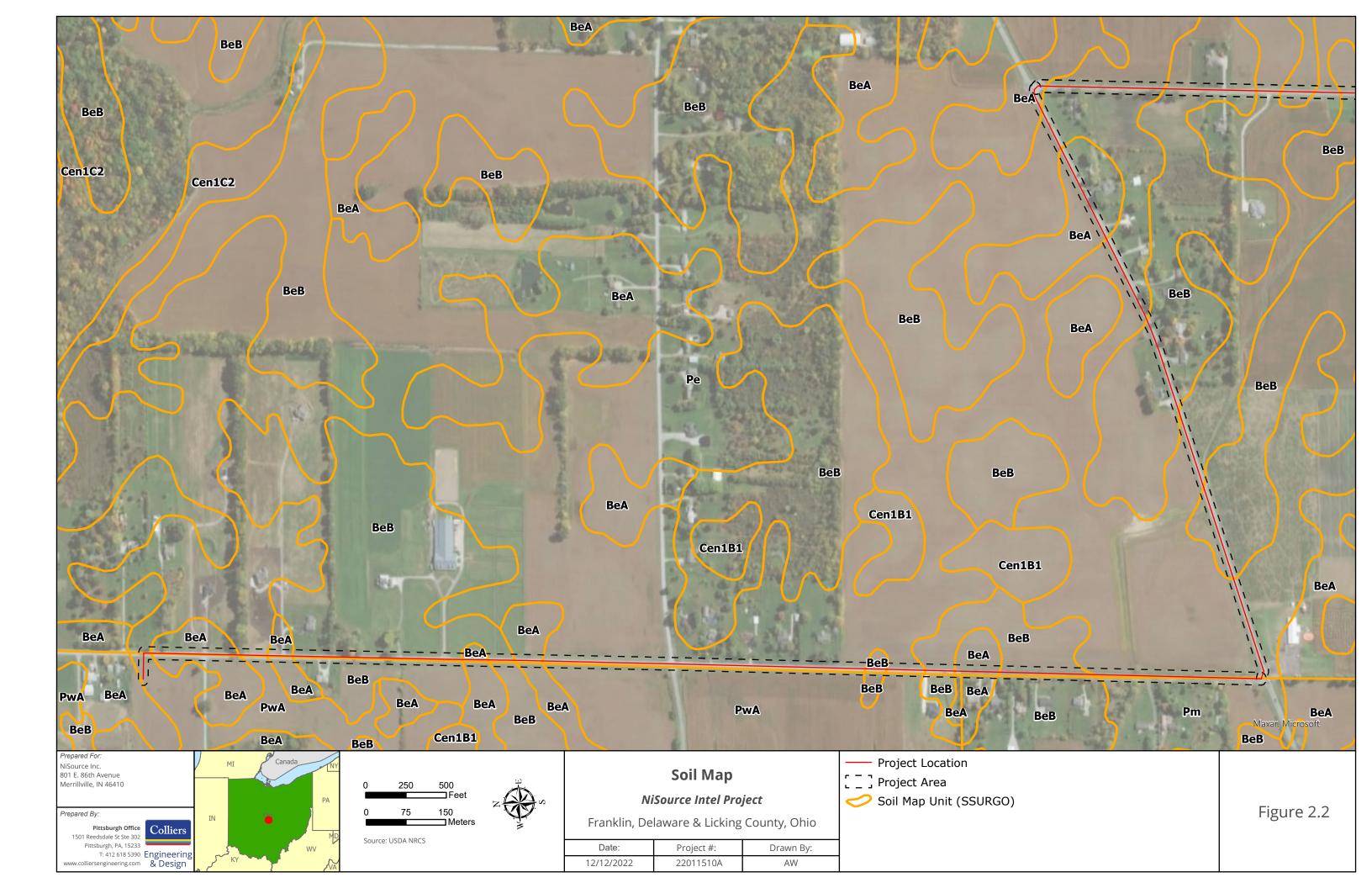
8.0 REFERENCE

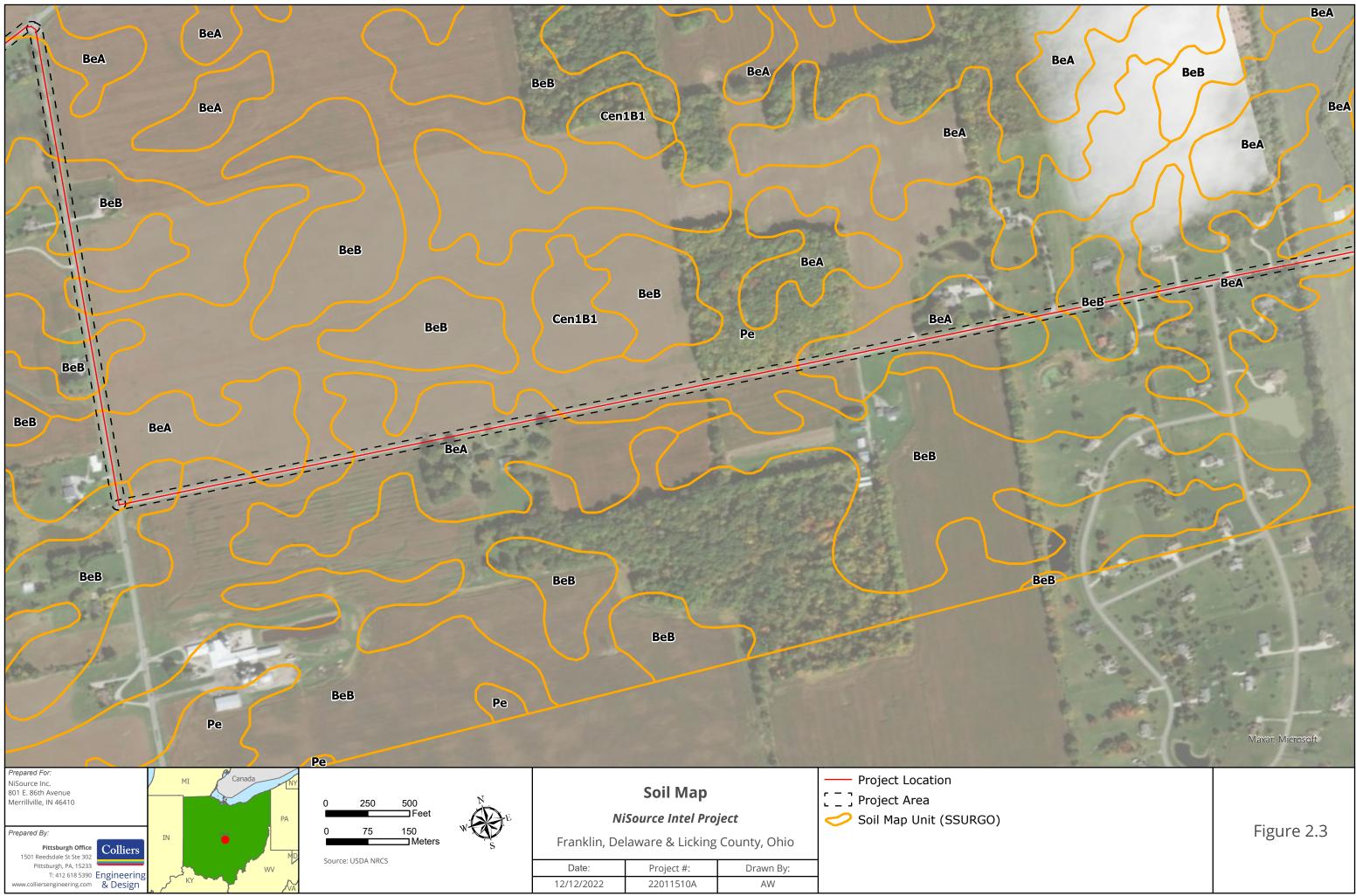
- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.
- Environmental Laboratory. 1987. "Corps of Engineers Wetlands Delineation Manual" Technical Report Y-87-1. US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Environmental Laboratory. 2012. "Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0)". Technical Report ERDC/EL TR-09-19. US Army Engineer Research and Development Center, Vicksburg, Miss.
- Federal Interagency Committee for Wetland Delineation. 1989. Federal Manual for Identifying and Delineation Jurisdictional Wetlands. U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington D.C. Cooperative technical publication. 76 pp. plus appendices.

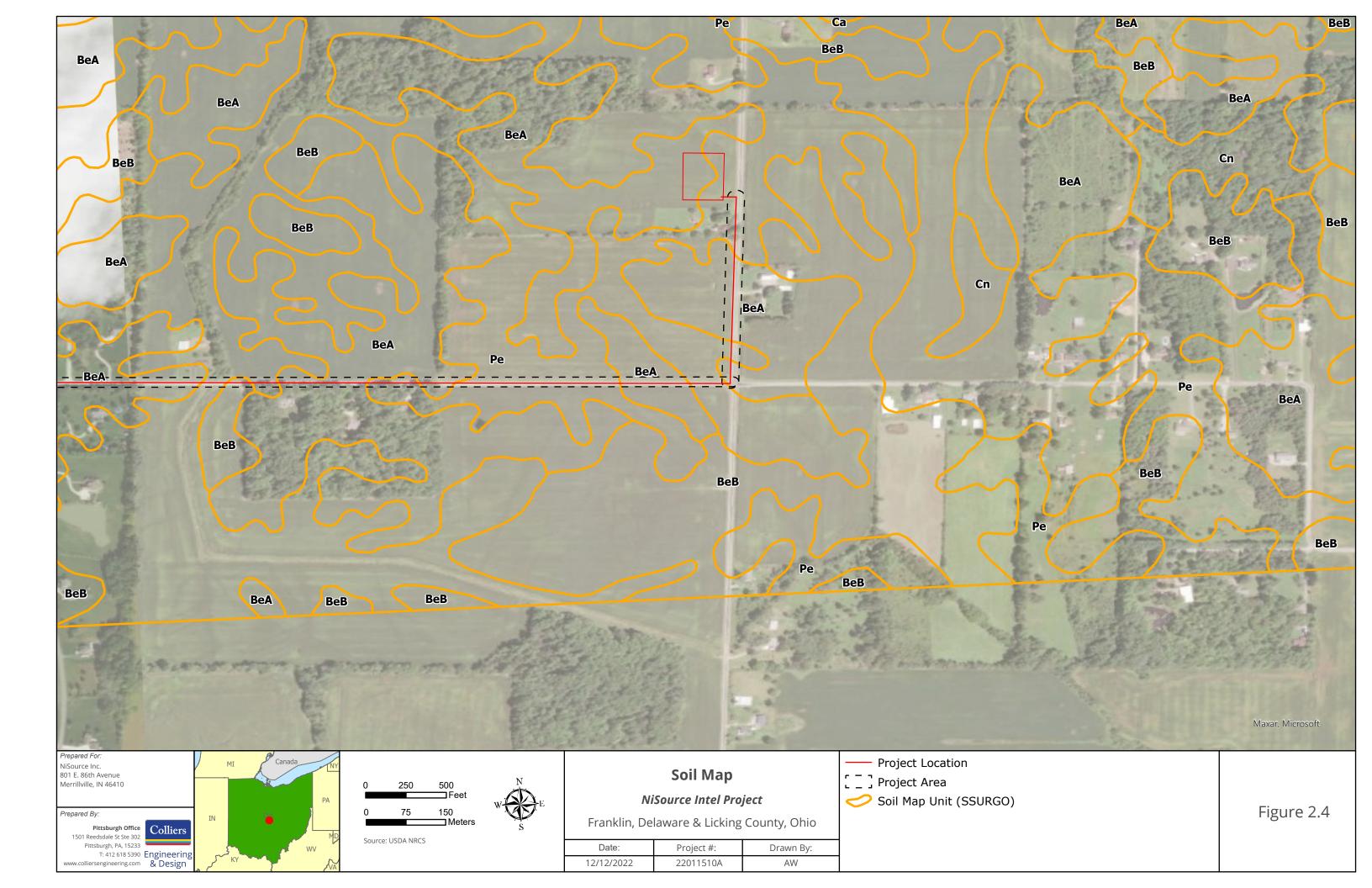
Federal Emergency Management Agency (FEMA). 2019. Flood Map Service Center. https://msc.fema.gov/portal.


- National List of Hydric Soils 2010, United States Department of Agriculture Natural Resource Conservation Service, https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/
- *Ohio Environmental Protection Agency (OhioEPA)*. (2022, February 25). Qualitative Habitat Evaluation Index (QHEI). https://ohioepa.custhelp.com/app/answers/detail/a_id/470/%7E/qualitative-habitat-evaluation-index-%28qhei%29


United States Department of Agriculture. Natural Resources Conservation Service http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm


- United States Fish and Wildlife Service. National Wetlands Inventory http://www.fws.gov/nwi/Overview.html
- USDA, NRCS. 2003. Field Indicators of Hydric Soils in the United States, Version 5.01, G.W. Hurt, P.M. Whited, and R.F. Pringle (eds.). USDA, NRCS in cooperation with the National technical Committee for Hydric Soils, Fort Worth, TX.




APPENDIX A FIGURES





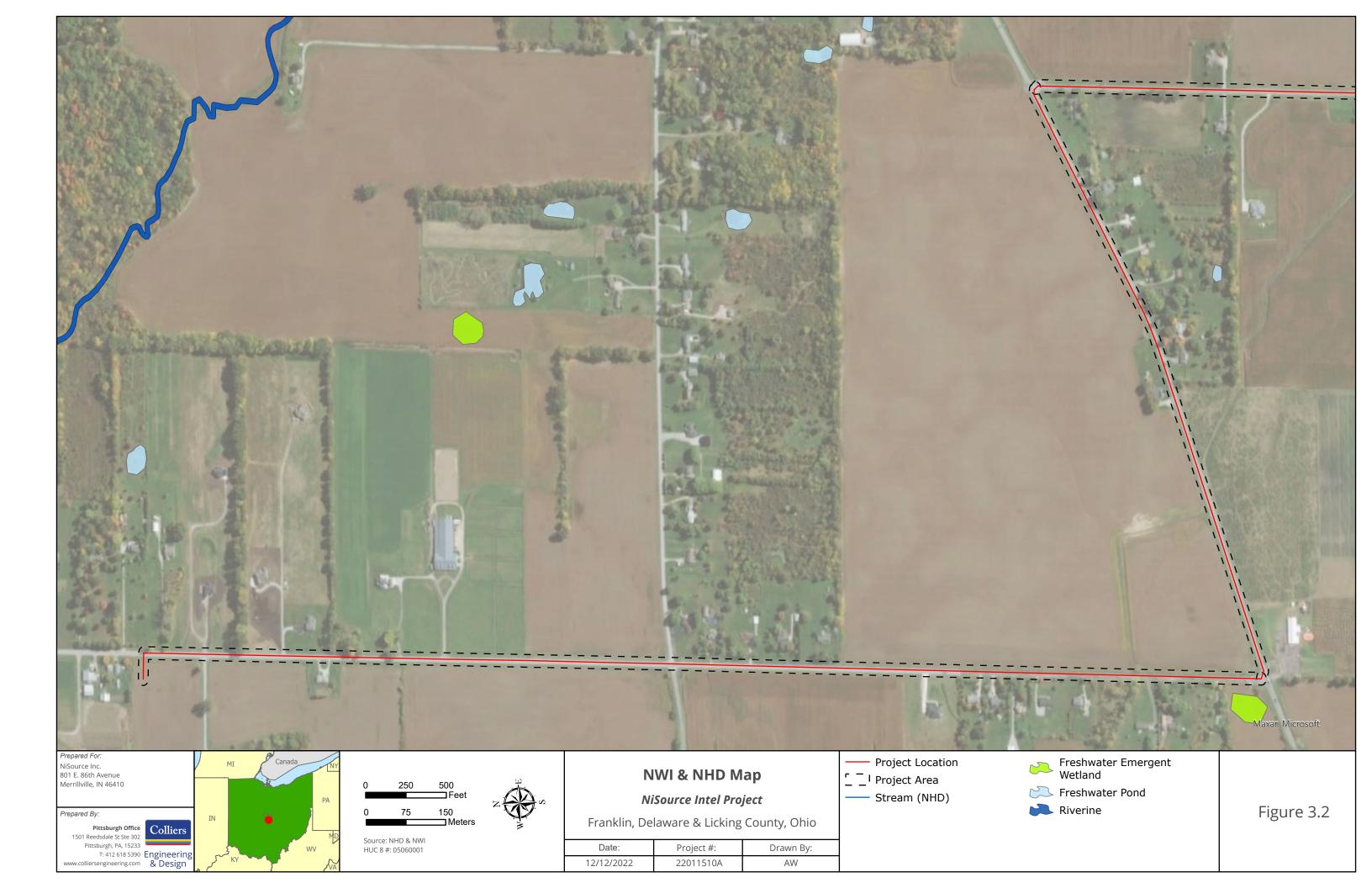
Prepared By: Pittsburgh Office Colliers 1501 Reedsdale St Ste 302 Pittsburgh, PA, 15233 T: 412 618 5390 ccolliersengineering.com

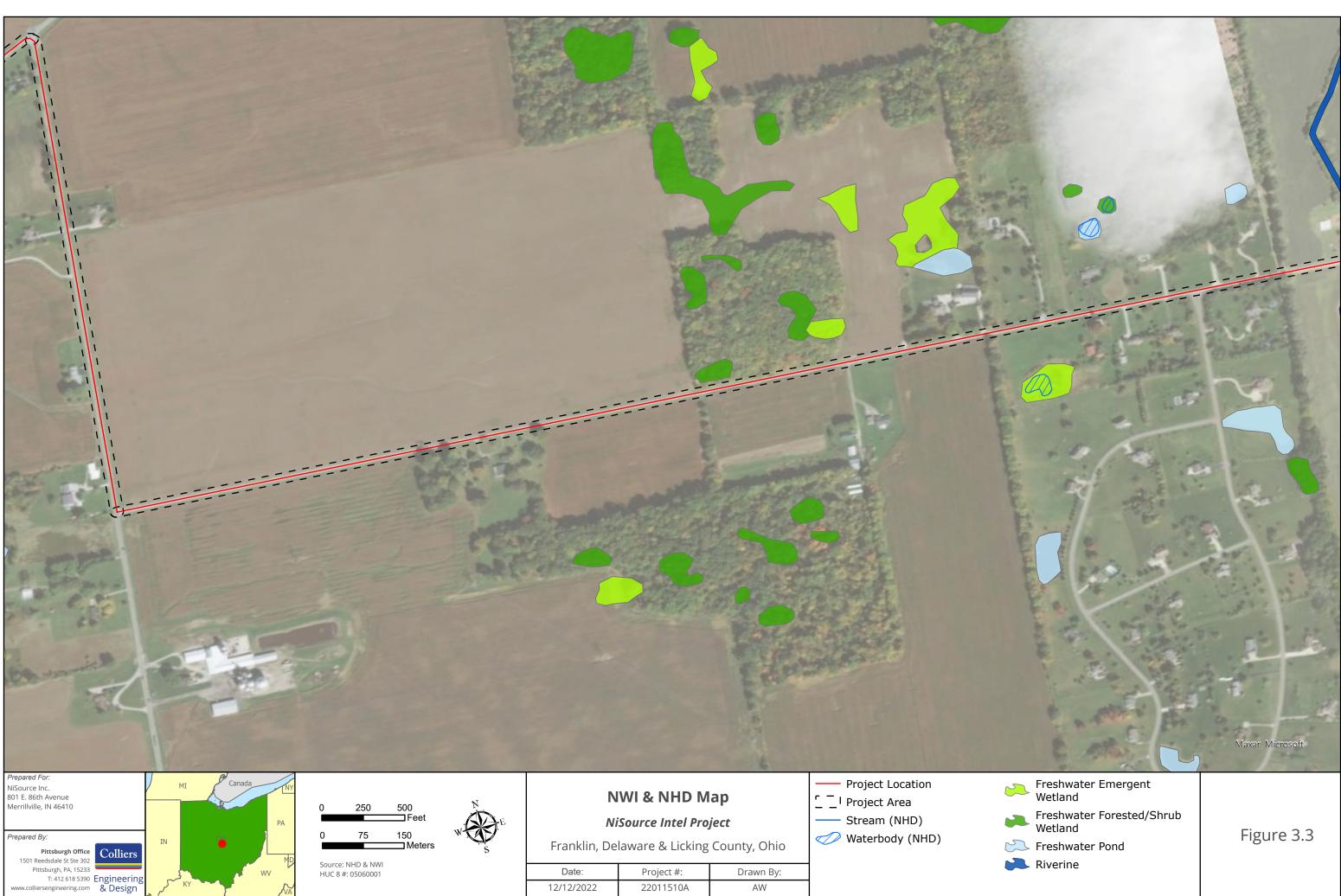
Source: NHD & NWI HUC 8 #: 05060001

NWI & NHD Map NiSource Intel Project

Franklin, Delaware & Licking County, Ohio

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW


Project Location ___I Project Area



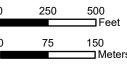
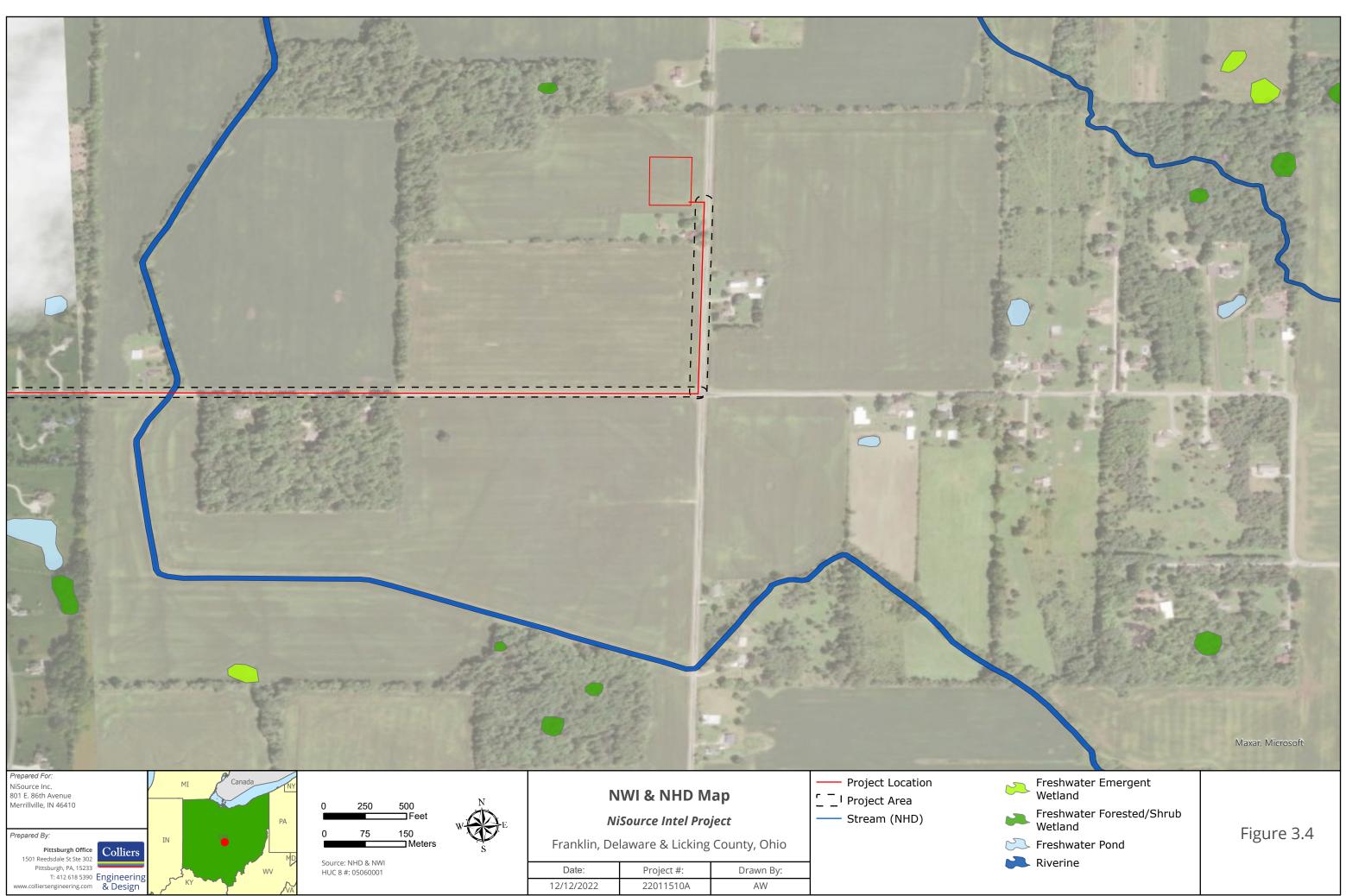
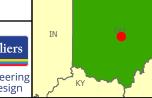
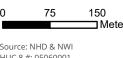
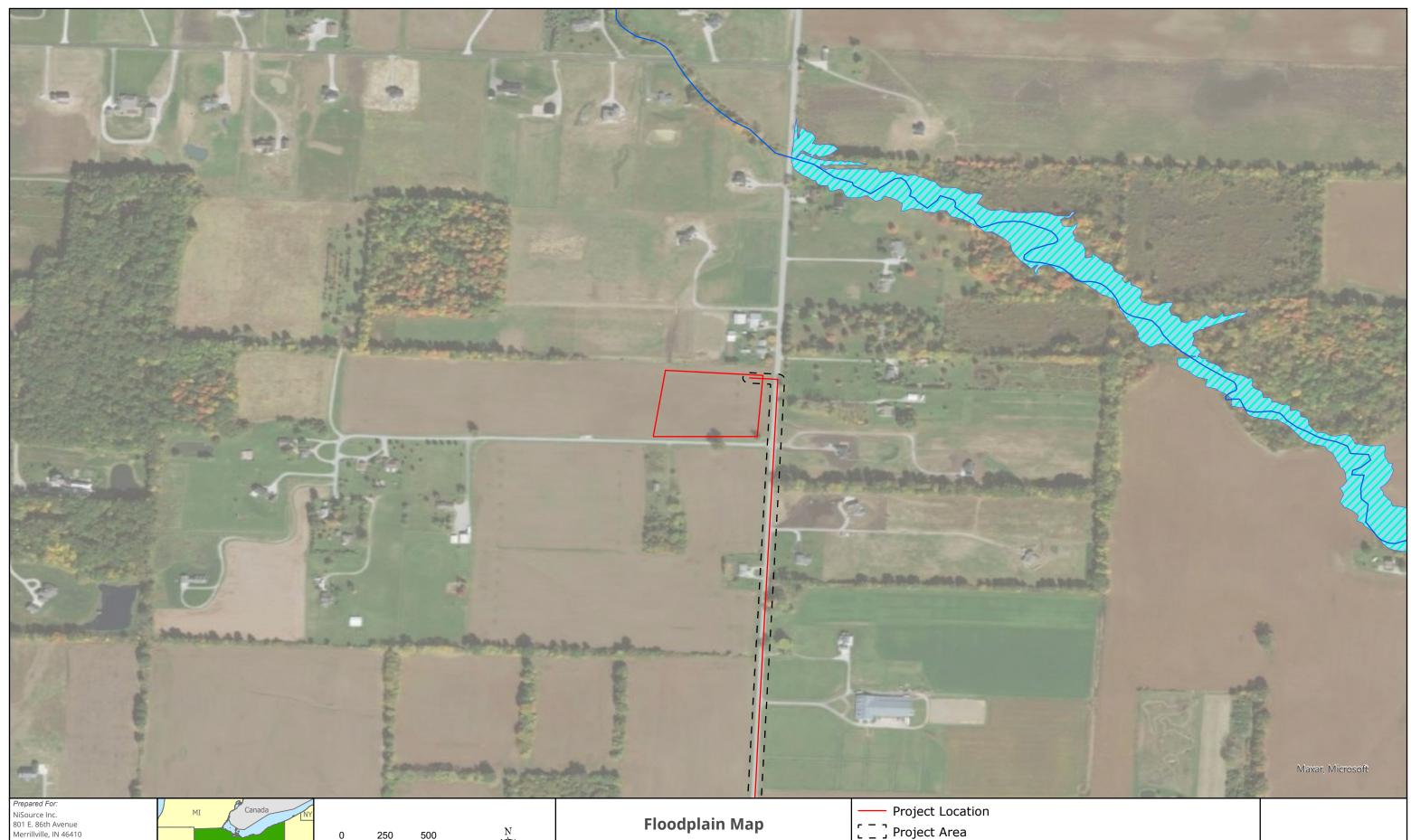

Freshwater Emergent Wetland Freshwater Pond

Figure 3.1



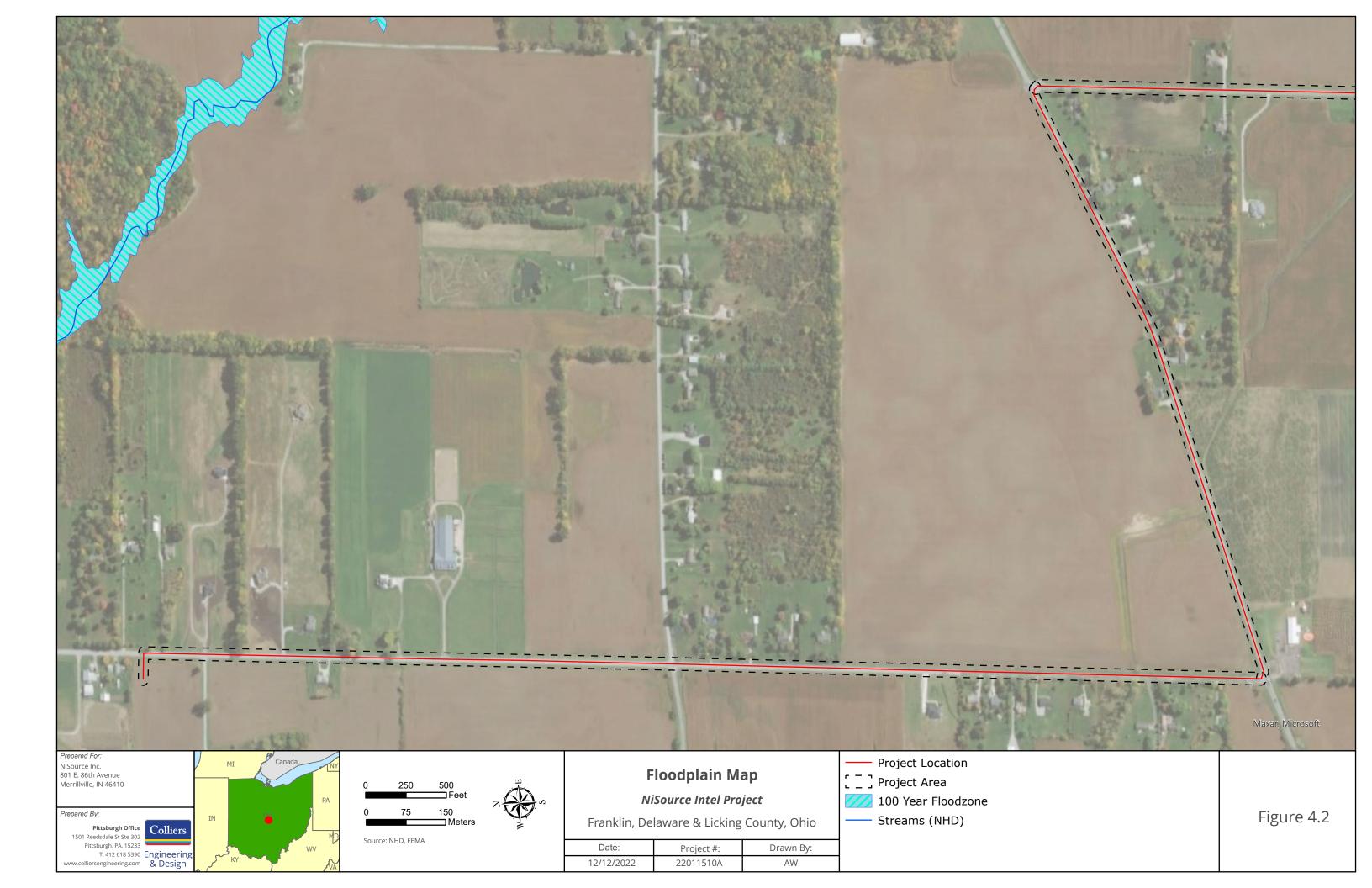





Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

Source: NHD, FEMA

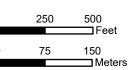

Floodplain Map NiSource Intel Project

Franklin, Delaware & Licking County, Ohio

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

[] Project Area 100 Year Floodzone - Streams (NHD)

Figure 4.1

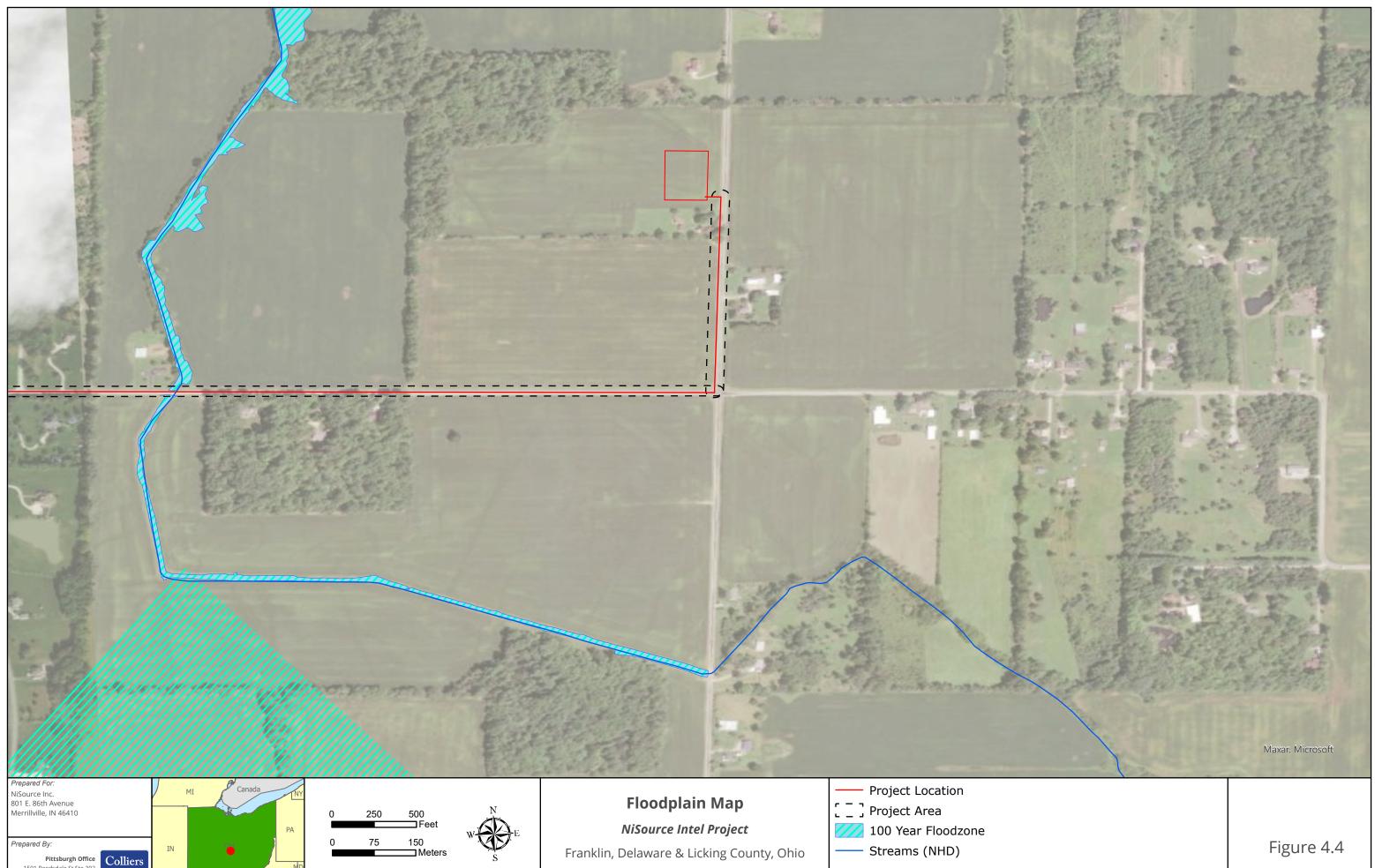


Merrillville, IN 464
Prepared By:

Prepared By: Pittsburgh Office 1501 Reedsdale St Ste 302 Pittsburgh, PA, 15233 T: 412 618 5390 www.colliersengineering.com

Source: NHD, FEMA

B.E	Franklin
-r	Franklin,


Franklin, Delaware & Licking County, Ohio			
Date:	Project #:	Drawn By:	
12/12/2022	22011510A	AW	

Floodplain Map

NiSource Intel Project

Figure 4.3

Drawn By:

AW

Source: NHD, FEMA

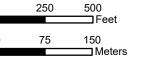
WV

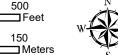
1501 Reedsdale St Ste 302

Pittsburgh, PA, 15233 T: 412 618 5390 colliersengineering.com

Date:

12/12/2022


Project #:


22011510A

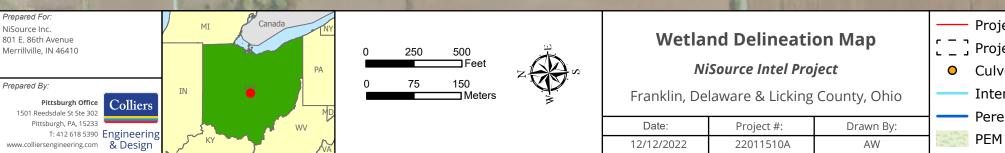
NiSource Intel Project

Franklin, Delaware & Licking County, Ohio

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

100	Carbon The State								
2	Aquatic Resource Area Summary Table								
1	Aquatic	PFO Area	PEF Area		Aquatic	R3 Length	R4 Length		
62	Resource	(AC)	(AC)		Resource	(LF)	(LF)		
3	Wetland 1		0.18		Stream 1	59			
2	Wetland 2	0.88			Stream 1		1,164		
64					Stream 1		6		
					Stream 2	41			
					Stream 2	32			
ちちちち	Total Wetlands by Class (AC)	0.88	0.18		Total Stream by Class(LF)	132	1,170		
Cardon Contraction	Total Wetlands (AC)	1.0	06		Total Streams (LF)	1,3	302		

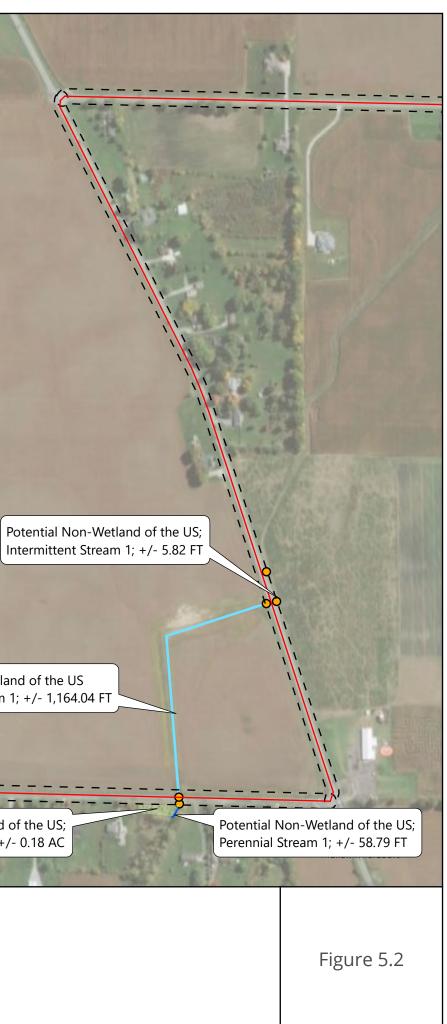
Note 1: Cowardin Classification; PFO = palustrine forested wetland; PEM = palustrine emergent wetland; R3 = perennial stream; R4 = intermittent stream


Prepared For:

NiSource Inc.

Prepared By:

Potential Non-Wetland of the US Intermittent Stream 1; +/- 1,164.04 FT


Potential Wetland of the US; Wetland 1; PEM +/- 0.18 AC

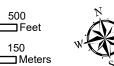
14.

and make a state

 Project Location [_] Project Area • Culverts Intermittent Perennial

11									
Aquatic Resource Area Summary Table									
Aquatic	PFO Area	PEF Area		Aquatic	R3 Length	R4 Length			
Resource	(AC)	(AC)	Resource		(LF)	(LF)			
Wetland 1		0.18		Stream 1	59				
Wetland 2	12 0.88		Stream 1		1,164				
				Stream 1		6			
				Stream 2	41				
				Stream 2	32				
Total Wetlands by Class (AC)	etlands y Class 0.88 0.18			Total Stream by Class(LF)	132	1,170			
Total Wetlands (AC)	1.06			Total Streams (LF)	1,3	302			

Note 1: Cowardin Classification; PFO = palustrine forested wetland; PEM = palustrine emergent wetland; R3 = perennial stream; R4 = intermittent stream


> Potential Wetland of the US; Wetland 2; PFO +/- 0.88 AC

Prepared For: NiSource Inc. 801 E. 86th Avenue Merrillville, IN 46410

Prepared By: Pittsburgh Office 1501 Reedsdale St Ste 302 Pittsburgh, PA, 15233 T: 412 618 5390 www.colliersengineering.com

250 500 Feet 75 150

Wetland Delineation Map

Project Location

 Project Area

 PFO


NiSource Intel Project

Franklin, Delaware & Licking County, Ohio

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

Figure 5.3

1501 Reedsdale St Ste 302 Pittsburgh, PA, 15233 T: 412 618 5390 Engineerin liersengineering.com & Design

WV

N	
E	N
s	Franklin, De

Date:	Project #:	Drawn By:
12/12/2022	22011510A	AW

1000	CITY PROPERTY IN CONTRACTOR								
Aquatic Resource Area Summary Table									
quatic	atic PFO Area PEF Area Aquatic R3 Length R4 L								
source	(AC)	(AC)		Resource	(LF)	(LF)			
tland 1		0.18		Stream 1	59				
tland 2	0.88			Stream 1		1,164			
				Stream 1		6			
				Stream 2	41				
				Stream 2	32				
otal tlands Class (AC)	0.88	0.18		Total Stream by Class (LF)		1,170			
ˈotal tlands (AC)	s 1.06			Total Streams (LF)	1,3	302			

Note 1: Cowardin Classification; PFO = palustrine forested wetland; PEM = palustrine emergent wetland; R3 = perennial stream; R4 = intermittent stream

Maxar, Microsoft

Figure 5.4

APPENDIX B DATA FORMS

Reset Form

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Intel Project Slice	City/County: Licking	Sampling Date: 11/10/22				
Applicant/Owner: Campos EPC	St	ate: OH Sampling Point: W-1				
Investigator(s): TD & AY	Section, Township, Range: Joh	nstown				
Landform (hillslope, terrace, etc.): Depression	Local relief (concave	, convex, none): <u>Concave</u>				
Slope (%): <u>5%</u> Lat: <u>40.123627</u>	Long: <u>-82.762073</u>	Datum: NAD 83				
Soil Map Unit Name: BeB		_NWI or WWI classification: PFO1				
Are climatic / hydrologic conditions on the site typical for this tim	e of year? Yes <u>×</u> No (If	no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrology signif	ficantly disturbed? Are "Normal C	Circumstances" present? Yes X No				
Are Vegetation, Soil, or Hydrology natur	ally problematic? (If needed, ex	plain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes X No		Yes X No				

Remarks: PEM Wetland

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30x30)	% Cover	Species?	Status	Number of Dominant Species
1. <i>Populus tremuloides</i>	30	Y	FAC	That Are OBL, FACW, or FAC: (A)
2			NI	
3				Total Number of Dominant Species Across All Strata: 8 (B)
4				
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: <u>87.50</u> (A/B)
Conling (Chryle Stratum (Distaire) 13×15	30	= Total Cov	er	Prevalence Index worksheet:
Sapling/Shrub Stratum (Plot size: 13x15)		.,		
1. <u>Ilex verticillata</u>			FACW	Total % Cover of: Multiply by:
2	15	<u>Y</u>	FACU	OBL species5 x 1 =5
3	30	Υ	FAC	FACW species <u>80</u> x 2 = <u>160</u>
4				FAC species 60 x 3 =180
5				FACU species 15 x 4 = 60
		= Total Cov		UPL species $0 \times 5 = 0$
Herb Stratum (Plot size: 5x5)				
1	5	Y	OBL	Column Totals: <u>160</u> (A) <u>405</u> (B)
2. Epilobium hirsutum	20	Y	FACW	Prevalence Index = B/A =2.53
•				
3. <u>Verbena hastata</u>			FACW	Hydrophytic Vegetation Indicators:
4. Phalaris arundinacea	20	Y	FACW	X Dominance Test is >50%
5	·		. <u> </u>	\underline{X} Prevalence Index is ≤3.0 ¹
6				Morphological Adaptations ¹ (Provide supporting
7				data in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
8				
9				¹ Indicators of hydric soil and wetland hydrology must
10	·			be present, unless disturbed or problematic.
	65	= Total Cov	rer	
Woody Vine Stratum (Plot size: 30x30)				
1				Hydrophytic
2				Vegetation Present? Yes X No
		= Total Cov	rer	
Remarks: (Include photo numbers here or on a separate s	sneet.)			

SOIL

Depth (inches)	Matrix Color (moist)	%	Color (moist)	<u>x Features</u> %	s Type ¹	Loc ²	Texture	Remarks
								Nemarks
0-16	10YR 2/1		7.5YR 5/6	10	C	M	Clay loam	
	oncentration, D=Dep	etion, RM=F	Reduced Matrix, CS	S=Covered	l or Coate	d Sand G		cation: PL=Pore Lining, M=Matrix.
•	Indicators:							for Problematic Hydric Soils ³ :
_ Histosol	()		Sandy (-				Prairie Redox (A16)
	pipedon (A2)		Sandy F					langanese Masses (F12)
	istic (A3) en Sulfide (A4)		Stripped	Mucky Mir			Other	(Explain in Remarks)
	d Layers (A5)			Gleyed Ma				
	uck (A10)		× Deplete					
	d Below Dark Surface	e (A11)	·	Dark Surfa				
	ark Surface (A12)	()		d Dark Su	• •		³ Indicators	s of hydrophytic vegetation and
_ Sandy N	Aucky Mineral (S1)		Redox I	Depressio	ns (F8)		wetlan	d hydrology must be present,
	ucky Peat or Peat (S3	8)					unless	s disturbed or problematic.
	Layer (if observed):							
CESTRICTIVE	Layer (II Observeu).							
Type:	Layer (il observeu).							
Туре:							Hydric Soi	l Present? Yes <u>X</u> No
Туре:							Hydric Soi	Present? Yes X No
Type: Depth (in							Hydric Soi	l Present? Yes X No
Type: Depth (in Remarks:							Hydric Soil	l Present? Yes <u>X</u> No
Type: Depth (in Remarks:							Hydric Soil	I Present? Yes <u>X</u> No
Type: Depth (in Remarks:							Hydric Soi	l Present? Yes X No
Type: Depth (in emarks:	ches):						Hydric Soi	I Present? Yes <u>X</u> No
Type: Depth (in remarks: leets F3	ches):						Hydric Soi	I Present? Yes <u>X</u> No
Type: Depth (in emarks: eets F3 /DROLO /etland Hy	ches):		ed; check all that an					
Type: Depth (in remarks: leets F3 //DROLO /etland Hy rimary India	ches): DGY drology Indicators:		ed; check all that an		es (B9)		<u>Second</u>	ary Indicators (minimum of two required
Type: Depth (in emarks: leets F3 //DROLO /etland Hy rimary India Surface	ches): PGY drology Indicators: cators (minimum of o		*	ined Leave	. ,		<u>Second</u>	
Type: Depth (in temarks: leets F3 /DROLO /etland Hy rimary India Surface High Wa	ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2)		Water-Sta	ined Leave auna (B13))		<u>Second</u>	ary Indicators (minimum of two required
Type: Depth (in temarks: leets F3 /DROLO /etland Hy rimary India Surface High Wa Saturation</td <td>ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2)</td> <td></td> <td> Water-Sta Aquatic Fa</td> <td>ined Leave auna (B13) atic Plants</td> <td>) (B14)</td> <td></td> <td><u>Seconda</u> Sur Dra Dry</td> <td>ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10)</td>	ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2)		Water-Sta Aquatic Fa	ined Leave auna (B13) atic Plants) (B14)		<u>Seconda</u> Sur Dra Dry	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10)
Type: Depth (in emarks: eeets F3 //DROLO /etland Hy rimary India Surface High Wa Saturatia<br Water M	Ches): GY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3)		Water-Sta Aquatic Fa True Aqua	ined Leave auna (B13) atic Plants Sulfide Oc) (B14) dor (C1)	ing Roots	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Dry</u> Cra	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2)
Type: Depth (in Remarks: Reets F3 YDROLO Vetland Hy Primary India Surface High Wa X Saturatia Water M Sediment	ches): drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) farks (B1)		Water-Sta Aquatic Fa True Aqua Hydrogen	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe) (B14) dor (C1) res on Livi	-	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Dry</u> Cra (C3) Sat	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8)
Type: Depth (in Remarks: Reets F3 YDROLO Vetland Hy Primary India Surface High Wa Saturatio Water M Sedimei Drift Dep	ches): DGY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2)		Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe of Reduce) (B14) dor (C1) res on Livi d Iron (C4	-)	<u>Second</u> <u>Sur</u> Sur <u></u> Dra <u></u> Dry <u>Cra</u> (C3) <u>Sat</u>	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9)
Type: Depth (in Remarks: Meets F3 YDROLO Vetland Hy Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma	ches): drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3)		Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe of Reduce on Reductio) (B14) dor (C1) res on Livi d Iron (C4 on in Tilled	-)	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1)
Type: Depth (in Remarks: Meets F3 YDROLO Vetland Hy Primary India Surface High Wa X Saturatia Water M Sedimen Sedimen Drift Dep Algal Ma Iron Dep	ches): GGY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	ne is require	Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence Recent Irc Thin Muck	ined Leave auna (B13) atic Plants Sulfide Oc Rhizospher of Reduce on Reduction & Surface () (B14) dor (C1) res on Livi d Iron (C4 on in Tilleo C7)	-)	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1) pmorphic Position (D2)
Type: Depth (in Remarks: Reets F3 YDROLO Vetland Hy Primary India Water M Saturatia Water M Sedimel Drift Dep Algal Ma Iron Dep Inundati	eches): GGY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	ne is require	Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence Recent Irc Thin Muck	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe of Reduce on Reducetio Surface (Well Data) (B14) dor (C1) res on Livi d Iron (C4 on in Tilled C7) (D9)	-)	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1) pmorphic Position (D2)
Type: Depth (in Remarks: Meets F3 YDROLO Vetland Hy Primary India Surface High Wa X Saturatia Water M Sedimei Drift Dej Algal Ma Iron Deg Inundati Sparsely	ches): drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial In y Vegetated Concave	ne is require	Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence Recent Irc Thin Muck	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe of Reduce on Reducetio Surface (Well Data) (B14) dor (C1) res on Livi d Iron (C4 on in Tilled C7) (D9)	-)	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1) pmorphic Position (D2)
Type: Depth (in Remarks: Meets F3 YDROLO Vetland Hy Primary India Surface High Wa X Saturatia Saturatia Urift Dej Algal Ma Iron Dep Inundati Sparseli	ches): drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) fon Visible on Aerial In y Vegetated Concave vations:	ne is require magery (B7)	Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence Recent Irc Thin Muck	ined Leave auna (B13) atic Plants Sulfide Oc Rhizosphe of Reduce on Reductio surface (Well Data blain in Re) (B14) dor (C1) res on Livi d Iron (C4 on in Tilleo C7) (D9) marks)) d Soils (C	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1) pmorphic Position (D2)
Type: Depth (in Remarks: Meets F3 YDROLO Vetland Hy Primary India Surface High Wa X Saturatia Water M Sedimen Drift Dej Algal Ma Iron Dep Inundati Sparseli	ches): GGY drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on Aerial In y Vegetated Concave vations: ter Present? Ye	ne is require magery (B7) Surface (Bł	Water-Sta Aquatic Fa True Aqua Hydrogen X Oxidized F Presence Recent Irc Thin Muck Gauge or 8) Other (Exp	ined Leave auna (B13) attic Plants Sulfide Oc Rhizosphe of Reduce on Reductio Surface (Well Data blain in Re) (B14) dor (C1) res on Livi d Iron (C4 on in Tilled C7) (D9) marks)) d Soils (C	<u>Second</u> <u>Second</u> <u>Sur</u> Dra <u>Cra</u> (C3) <u>Sat</u> Stu 6) <u>X</u> Geo	ary Indicators (minimum of two required face Soil Cracks (B6) inage Patterns (B10) -Season Water Table (C2) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) nted or Stressed Plants (D1) pmorphic Position (D2)

(includes capillary fringe)				,			
Describe Recorded Data (stream gauge, mo	onitoring well,	aerial p	photos, p	previous inspe	ctions), if a	available:

N/A

Remarks:

Reset Form

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Intel Project Slice	City/County: Licking Sampling Date: 11/10/22						
Applicant/Owner: Campos EPC	State: OH Sampling Point: W-2						
Investigator(s): TD & AY	_ Section, Township, Range: <u>Johnstown</u>						
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex, none): <u>Concave</u>						
Slope (%): <u>5%</u> Lat: <u>40.116139</u>	_ Long: <u>-82.742746</u> Datum: <u>NAD 83</u>						
Soil Map Unit Name: <u>Pe</u>	NWI or WWI classification: PFO1						
Are climatic / hydrologic conditions on the site typical for this time of	year? Yes X No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrology significan	ly disturbed? Are "Normal Circumstances" present? Yes X No						
Are Vegetation, Soil, or Hydrology naturally	problematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showin	ng sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes X No	- within a Wetland? Yes X No						
Remarks:							
PFO Wetland							
VEGETATION – Use scientific names of plants.							
Absolu							
Tree Stratum (Plot size:	Species? Status Number of Dominant Species Y FAC That Are OBL FACW or FAC 8 (A)						
2 Populus tremuloides 20	Y <u>FAC</u> That Are OBL, FACW, or FAC: <u>8</u> (A)						

2. Populus tremuloides	20	Y	FAC	Total Number of Dominant
3. <u>Ulmus americana</u>	20	Y	FACW	Species Across All Strata:9 (B)
4			NI	Percent of Dominant Chastica
5				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>88.89</u> (A/B)
	100	= Total Cove	er	
Sapling/Shrub Stratum (Plot size: 13x15)				Prevalence Index worksheet:
1	10	<u>Y</u>	FACW	Total % Cover of:Multiply by:
2. <u>Ulmus americana</u>	10	<u>Y</u>	FACW	OBL species x 1 =0
3. Cornus mas	10	Y	FAC	FACW species <u>80</u> x 2 = <u>160</u>
4. <u>Carex intumescens</u>	10	Y	FACW	FAC species 90 x 3 =270
5				FACU species x 4 =
	40	= Total Cove	er	UPL species x 5 =0
Herb Stratum (Plot size: 5x5)				Column Totals: <u>170</u> (A) <u>430</u> (B)
1. <i>Phalaris arundinacea</i>	30	<u>Y</u>	FACW	
2. sedge spp	10	Y	NI	Prevalence Index = B/A =2.53
3			NI	Hydrophytic Vegetation Indicators:
4			NI	<u>X</u> Dominance Test is >50%
5				\mathbf{X} Prevalence Index is $\leq 3.0^1$
6				Morphological Adaptations ¹ (Provide supporting
7				data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				¹ Indicators of hydric soil and wetland hydrology must
10		= Total Cove	or.	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: 30x30)				
1				Hydrophytic
2				Vegetation Present? Yes X No
		= Total Cove	er	Present? Yes <u>X</u> No
Remarks: (Include photo numbers here or on a separate sh	neet.)			1
	,			

Depth	Matrix		ox Features				
(inches)	Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16	10YR 2/1 90	7.5YR 5/6	10	C	M	Clay loam	
			- <u> </u>				
	oncentration, D=Depletion, F	RM=Reduced Matrix, C	- S=Covered	I or Coate	d Sand G		ation: PL=Pore Lining, M=Matrix.
•	Indicators:						for Problematic Hydric Soils ³ :
Black Hi	pipedon (A2) istic (A3) en Sulfide (A4)	Sandy Strippe Loamy	Gleyed Ma Redox (S5) d Matrix (S Mucky Min Gleyed Ma) 6) ieral (F1)		Iron-Ma	Prairie Redox (A16) anganese Masses (F12) Explain in Remarks)
2 cm Mu Depleter Thick Da Sandy M 5 cm Mu	d Below Dark Surface (A11) ark Surface (A12) /lucky Mineral (S1) ucky Peat or Peat (S3)	X Deplete Redox Deplete		⁻ 3) ce (F6) rface (F7)		wetland	of hydrophytic vegetation and d hydrology must be present, disturbed or problematic.
_	Layer (if observed):						
Туре:							
Depth (in emarks:	ches):					Hydric Soil	Present? Yes X No
leets F3							
DROLO							
	drology Indicators:					Casarda	. Indiante a facini a statu a statu
	cators (minimum of one is re	• •		(50)			ry Indicators (minimum of two require
_	Water (A1)		ined Leave	()			ace Soil Cracks (B6)
	ater Table (A2)	Aquatic F					nage Patterns (B10)
Saturation	. ,		atic Plants	. ,		-	Season Water Table (C2)
	1arks (B1) nt Donosita (B2)		Sulfide Oc		ing Docto		fish Burrows (C8)
	nt Deposits (B2)	X Oxidized			-		ration Visible on Aerial Imagery (C9)
	posits (B3)		of Reduce	•	,		nted or Stressed Plants (D1)
Aiyai IVia	at or Crust (B4)		on Reduction		1 JUIIS (U	0, 000	morphic Position (D2)
-	posits (B5)	Thin Muel	Surface ((7)			-Neutral Test (D5)

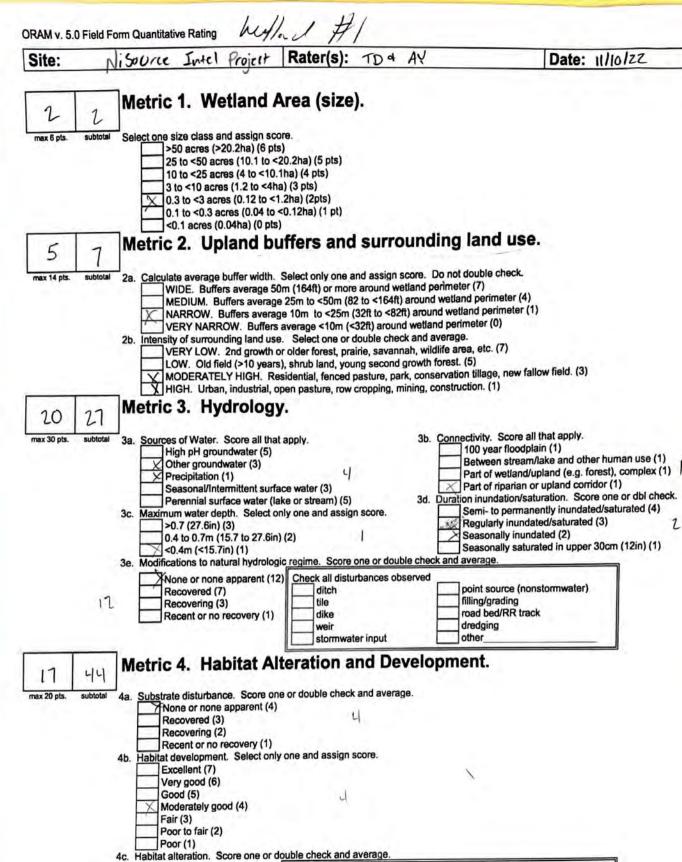
Inundation Visible on Ae	erial Imagery (B7)	Gauge or Well Data (D9)	
Sparsely Vegetated Cor	ncave Surface (B8)	Other (Explain in Remarks)	
Field Observations:			
Surface Water Present?	Yes No _	X Depth (inches):	
Water Table Present?	Yes No _	X Depth (inches):	
Saturation Present? (includes capillary fringe)	Yes 🗶 No _	Depth (inches): 0	Wetland Hydrology Present? Yes X No
Describe Recorded Data (str	ream gauge, monito	ring well, aerial photos, previous inspec	ctions), if available:
N/A			
Remarks:			

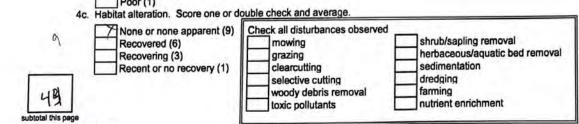
Reset Form

WETLAND DETERMINATION DATA FORM – Midwest Region

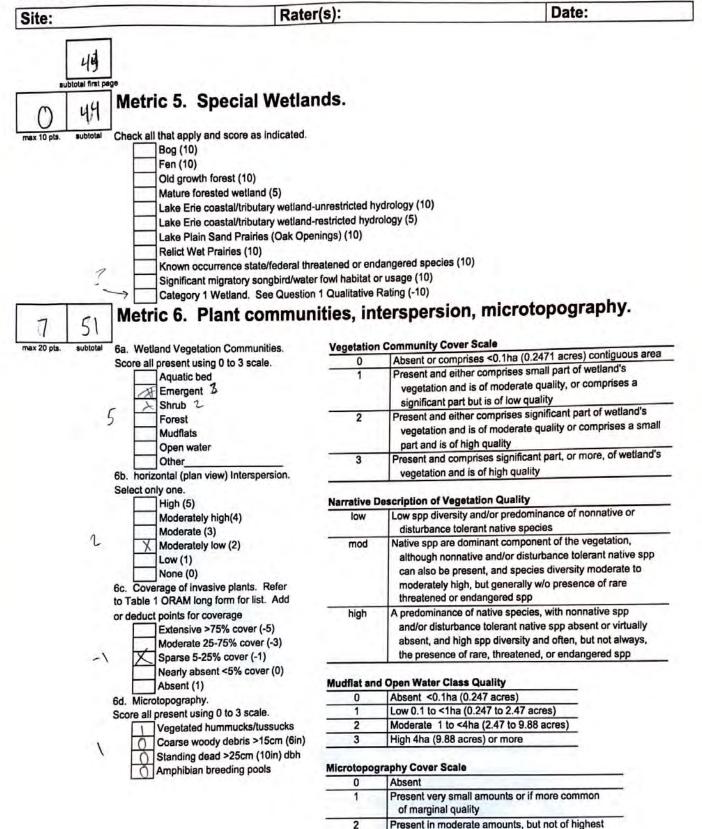
Project/Site: Intel Project Slice	City/County: Gahannah/Franklin Sampling Date: 3/2/22
Applicant/Owner: Campos EPC	State: OH Sampling Point: UP1
Investigator(s): REK	Section, Township, Range: <u>T/N R116W</u>
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex, none): Concave
Slope (%): <u>5%</u> Lat:	Long: Datum: NAD 83
Soil Map Unit Name: CrcllC2	NWI or WWI classification:
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	roblematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No _X Hydric Soil Present? Yes No _X Wetland Hydrology Present? Yes No _X Remarks: Xes No _X	within a Wetland? Yes No X

VEGETATION – Use scientific names of plants.


	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30x30)	% Cover	Species?	Status	Number of Dominant Species
1. Acer rubrum	15	Y	FAC	That Are OBL, FACW, or FAC:3 (A)
2. Fragus grandifolia	5	Y	FACU	Total Number of Dominant
3. <u>Acer saccharum</u>	5	Y	FACU	Species Across All Strata:6 (B)
4			NI	
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.00 (A/B)
		= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 13x15)				Prevalence Index worksheet:
1. <u>Acer rubrum</u>	15	Y	FAC	Total % Cover of: Multiply by:
2. <u>R</u> osa multiflora	10	Y	FACU	OBL species x 1 =
3			NI	FACW species0 x 2 =0
4				FAC species 35 x 3 =105
5				FACU species 20 x 4 = 80
· ·		= Total Cov		UPL species 0 x 5 = 0
Herb Stratum (Plot size: 5x5)			CI	Column Totals: <u>55</u> (A) <u>185</u> (B)
1			NI	
2				Prevalence Index = B/A = 3.36
3				Hydrophytic Vegetation Indicators:
4				Dominance Test is >50%
5				Prevalence Index is ≤3.0 ¹
				Morphological Adaptations ¹ (Provide supporting
6				data in Remarks or on a separate sheet)
7				Problematic Hydrophytic Vegetation ¹ (Explain)
8				
9			·	¹ Indicators of hydric soil and wetland hydrology must
10			<u> </u>	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:30x30)	. <u> </u>	= Total Cov	er	
	5	V	EAC	Hydrophytic
		<u> Y </u>	FAC	Vegetation
2			<u> </u>	Present? Yes <u>X</u> No
	5	= Total Cov	er	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

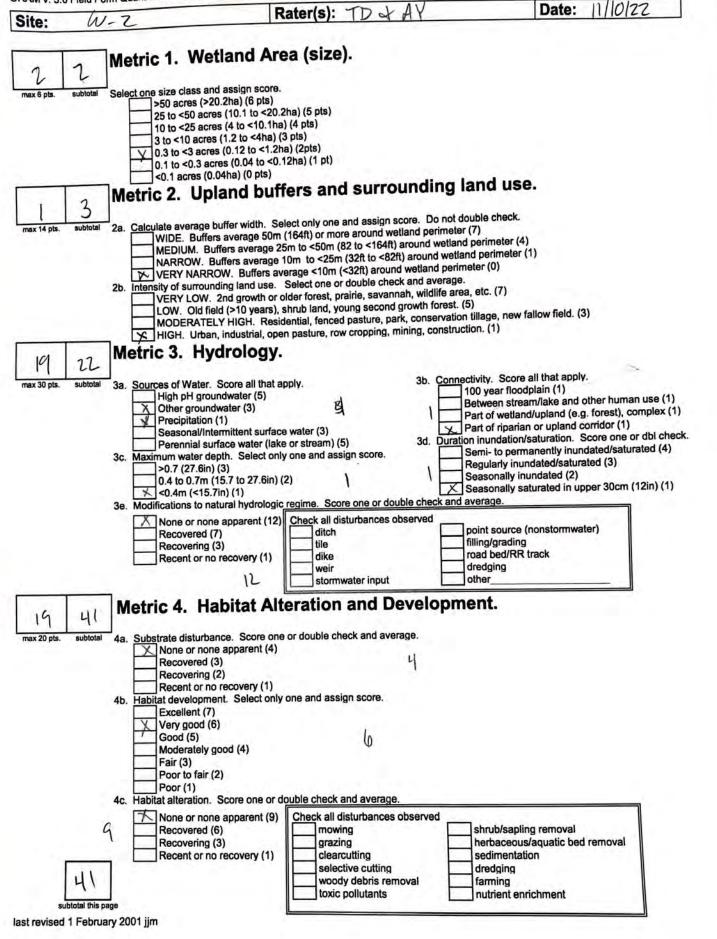

SOIL

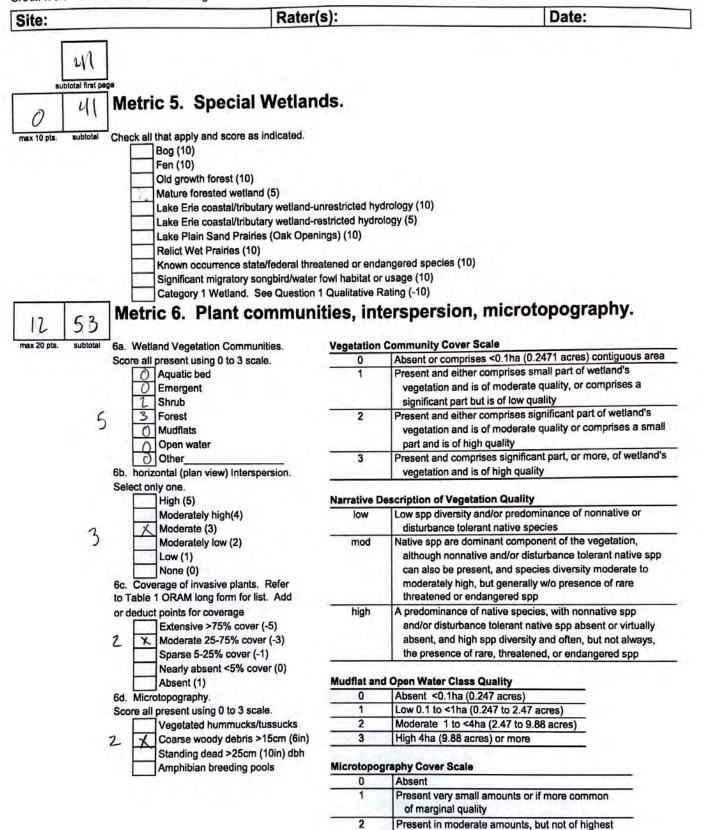
Profile Desc	ription: (Describe t	to the depth n	eeded to docur	nent the i	ndicator	or confirm	n the absence of ind	dicators.)	
Depth	Matrix		Redo	x Feature	s				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remark	S
0-8	10YR 6/4	100					Clay		
				·	·				
		<u> </u>		·	·				
				·					_
<u> </u>				·	·		·		
				·	·				
	oncentration, D=Depl	etion, RM=Re	duced Matrix, CS	S=Covered	d or Coate	d Sand Gr		PL=Pore Lining	
Hydric Soil								roblematic Hydr	ic Soils":
Histosol	· · /			Gleyed Ma				e Redox (A16)	
	oipedon (A2)			Redox (S5	,			nese Masses (F12	2)
Black Hi	· · ·			d Matrix (S	,		Other (Expla	ain in Remarks)	
	n Sulfide (A4)			•	neral (F1)				
	d Layers (A5)			Gleyed Ma	• •				
	ick (A10)			d Matrix (,				
·	d Below Dark Surface	e (A11)		Dark Surfa	. ,		3		
	ark Surface (A12)		/		Irface (F7)		•	drophytic vegetat	
	lucky Mineral (S1)			Depressio	ns (F8)		•	ology must be pro	
	icky Peat or Peat (S3 Layer (if observed):)						bed of problema	IIC.
			-						
	ches):		_				Hydric Soil Pres	ent? Yes	NoX
Remarks:									


HYDROLOGY

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) True Aquatic Plants (B14) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Living	 Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
	Stunted or Stressed Plants (D1)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes <u>No X</u> Depth (inches):	
Saturation Present? Yes No X Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No _X
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe	ctions), if available:
N/A	
Remarks:	

last revised 1 February 2001 jjm


End of Quantitative Rating. Complete Categorization Worksheets.


3

quality or in small amounts of highest quality

Present in moderate or greater amounts

and of highest quality

53

End of Quantitative Rating. Complete Categorization Worksheets.

3

quality or in small amounts of highest quality

Present in moderate or greater amounts

and of highest quality

Chio Environmental Protection Agency	Headwater Habitat Evaluation Index Field Form HHEI Score (sum of metrics 1+2+3)	5
LENGTH OF STREAM RE DATE // II/(U/12 sc NOTE: Complete All Iter	I SOURCE Intel Project	ions
(Max of 32). Add to TYPE BLDR SLABS BOULDER (>2 BEDROCK [16 COBBLE (65-2 GRAVEL (2-64 COBBLE (65-2 COBBLE (65-2) COBBLE (65-2 COBBLE (65-2) COBBLE (Atal number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B PERCENT TYPE PERCENT PO Sub 16 pts]	HEI etric ints strate x = 40 D B
2 Maximum Pool D	Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box): Max O pts] 5 cm - 10 cm [15 pts] 7	Depth = 30
> 4.0 meters (> 13" > 3.0 m - 4.0 m (> 5 > 1.5 m - 3.0 m (> 4	[30 pts] □ > 1.0 m - 1.5 m (> 3' 3" - 4' 8")[15 pts] [7"- 13')[25 pts] □ ≤ 1.0 m (≤ 3' 3")[5 pts]	STORES L
COMMENTS	AVERAGE BANKFULL WIDTH (meters)	
L R RIPARIA L R (Per Billing) Wide >10 Moderate Moderate Narrow None None	CONE AND FLOODPLAIN QUALITY * NOTE: River Left (L) and Right (R) as looking downstream * WIDTH ink) FLOODPLAIN QUALITY (Most Predominant per Bank) Imm Imm L R 5-10m Immature Forest, Wetland Immature Forest, Shrub or Old Field 5m Immature Forest, New Field Open Pasture, Row Crop Fenced Pasture Imming or Construction	
Stream Flow Subsurface f COMMENT SINUOSITY	IME (At Time of Evaluation) (Check ONLY one box): ng Moist Channel, isolated pools, no flow (intermittent) ow with isolated pools (interstitial)	
0.5 STREAM GRADIE STREAM GRADIE	1.5	_

Page 1

	No QHEI Score (If Yes, At	tach Completed OLICI (
		ach completed QHEI form)
		Distance from Evaluated Stream
		Distance from Evaluated Stream Distance from Evaluated Stream
		Distance from Evaluated Stream
		AREA. CLEARLY MARK THE SITE LOCATION.
USGS Quadrangle Name:	NRCS Soil Map Page:	NRCS Soil Map Stream Order:
County:	Township/City:	
MISCELLANEOUS)
Base Flow Conditions? (Y/N): Date	of last precipitation:	Quantity:
Photo-documentation Notes:		
Elevated Turbidity? (Y/N): Can	opy (% open):	
Were samples collected for water chemistry?	? (Y/N): Lab Sample # or ID) (attach results):
Field Measures: Temp (°C) Dissolv	ved Oxygen (mg/l) pH (S.U.)	Conductivity (umhos/cm)
Is the sampling reach representative of the s	troom (V(N)	1
	BIOLOGICAL OBSERVATIONS	
	(Record all observations below)	
Aquatic Macroinvertebrates Observed? (Y/N) Species observed (if known):	
Comments Regarding Biology:		
	IVE DESCRIPTION OF STREAM	REACH (This <u>must</u> be completed)
	thes factures of interact for site evaluation an	a narrative description of the stream's location
	GStream Inte	rminkent
1 stream 1		
1 stream 1 (per)		
N		

May 2020 Revision

Chio Environmental Protection Agency	Headwater H		ation Index Fie HEI Score (sum o		33
LENGTH OF STREAM F	RIVER BASIN EACH (ft) LAT SCORER	00 (4 RIVE 40 , 12 1499 COMMENTS	_ LONG 87.75925	RAINAGE AREA (mi²) <u>イ</u> RIVER MILE	
STREAM CHANNEL M 1. SUBSTRATE (E (Max of 32). Add TYPE BLDR SLAB BOULDER (BEDROCK [BEDROCK [GRAVEL (2- COBBLE (65 GRAVEL (2- COBBLE (65 COBBLE (65 COBBLE (65 COBBLE (65 COBBLE (65 COBBLE (2- COBBLE (65 COBBLE (2- COBBLE (2-	>256 mm)[16 pts]	A NATURAL CHANNEL		(B)	
2. Maximum Pool	Depth (<i>Measure the <u>maximu</u> n. Avoid plunge pools from roa</i> [20 pts]) pts]	m pool depth within ad culverts or storm w 5 5	the 61 meter (200 feet) eva	aluation reach at the Y one box):	Pool Depth Max = 30
> 4.0 meters (> 1) > 3.0 m - 4.0 m (>	OTH (Measured as the averag 3') [30 pts] 9' 7"- 13') [25 pts] 4' 8" - 9' 7") [20 pts]	ge of 3 - 4 measuren	and the second se	box): [15 pts]	Bankfull Width Max=30
		is information must			
L R (Per Wide >	te 5-10m	FLOODPLAIN QU Mature Forest, W	ALITY (Most Predominant p L R etland Shrub or Old Field		op
FLOW RE Stream Flo	GIME (At Time of Evaluation) wing flow with isolated pools (inter			pools, no flow (intermitter ephemeral)	- nt) -
SINUOSIT None 0.5 STREAM GRADII	Active and a second	(200 ft) of channel)	(Check ONLY one box): 2.0 [2.5 [Moderate to Severe	3.0 >3	00 ft)
May 2020 Revision	"In t"	Page 1 5 Ditch			

ADDITIONAL STREAM INFORMATION (This Information Must Also be Completed):

	Distance from Evaluated Stream
	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
SGS Quadrangle Name: New Alborn NF county: Licking Tow MISCELLANEOUS ase Flow Conditions? (Y/N): N Date of last precipitation: Photo-documentation Notes:	5% open
dditional comments/description of pollution impacts: BIOLOGICAL OI (Record all obse ish Observed? (Y/N) Species observed (if known):	BSERVATIONS ervations below)
	if known):
	wn):
	bserved (if known):
omments Regarding Biology:	
DRAWING AND NARRATIVE DESCRIPT	TION OF STREAM REACH (This must be completed)
Include important landmarks and other features of intere	TION OF STREAM REACH (This <u>must</u> be completed) est for site evaluation and a narrative description of the stream's location
Include important landmarks and other features of intere	est for site evaluation and a narrative description of the stream's location
Include important landmarks and other features of intere	est for site evaluation and a narrative description of the stream's location
Include important landmarks and other features of intere	Ag Field Section is bisected by
Include important landmarks and other features of intere	Ag Field Ag Field Ag Field Section is bisected by Totorstaula Utica RA
Include important landmarks and other features of intere	Ag Field Section is bisected by

May 2020 Revision

-

-

Stream 1 (Jul)

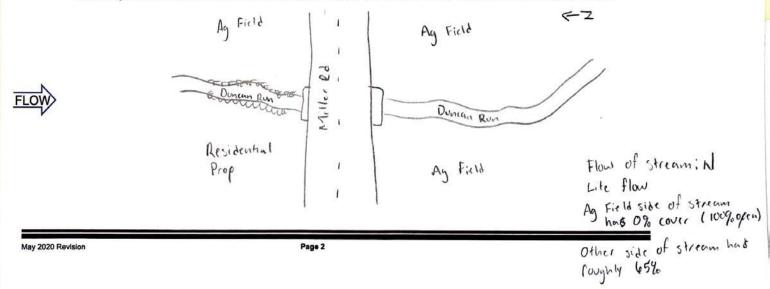
-

-

-

Ohio Environmental Protection Agency			ation Index Fie HEI Score (sum of	eld Form f metrics 1+2+3)	3
DATE 11/10/20	$\frac{1}{10000000000000000000000000000000000$	COMMENTS		RAINAGE AREA (mi²) J RIVER MILE	
				Field Manual" for Instru-	
(Max of 32). Ad TYPE BLDR SLAE BOULDER BEDROCK COBBLE (6 GRAVEL (2 SAND (<2 n Total of Per Bldr Slabs, Bould	d total number of significan PERC S [16 pts] >256 mm)[16 pts] (16 pts] 5-256 mm)[12 pts] 64 mm)[9 pts] mm) [6 pts]	t substrate types found (N ENT TYPE Image: Site of the substrate types found (N Image: Site of the substrate types found (N	NLY <u>two</u> predominant subst Max of 8). Final metric score T [3 pt] AF PACK/WOODY DEBRIS E DETRITUS [3 pts] AY or HARDPAN [0 pt] CK [0 pts] TIFICIAL [3 pts] OTAL NUMBER OF SUBST	(B)	HHEI Metric Points ubstrate Max = 40 3 A + B
2 Maximum Poo	Depth (<i>Measure the <u>max</u> n. Avoid plunge pools from</i> [20 pts] 0 pts]	imum pool depth within n road culverts or storm w 24 5 0 < 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cm - 10 cm [15 pts] 5 cm [5pts] 9 WATER OR MOIST CHAN	NEL [0pts]	ol Depth lax = 30
> 4.0 meters (> 1 > 3.0 m - 4.0 m (erage of 3 - 4 measurem	MAXIMUM POOL DEPTH nents) (Check ONLY one .0 m - 1.5 m (> 3' 3" - 4' 8")[.0 m (≤ 3' 3")[5 pts] AVERAGE BANKFULL W	15 pts]	ankfull Width Iax=30
		This information must	also be completed		
LR (Per	AN WIDTH Bank) L 10m ate 5-10m	IN QUALITY ★ NOTE: FLOODPLAIN QU R Mature Forest, W	River Left (L) and Right (R) : ALITY (Most Predominant p L R etland Direction Shrub or Old Field		
Stream Fic Subsurface COMMEN SINUOSI None	GIME (At Time of Evaluati wing flow with isolated pools (ir TS Y (Number of bends per 6	nterstitial)	Moist Channel, isolated Dry channel, no water (e	pools, no flow (intermittent) aphemeral) 3.0 >3	
0.5 STREAM GRADI	ENT ESTIMATE	Moderate (2 ft/100 ft)	Moderate to Severe	Severe (10 ft/100 ft)

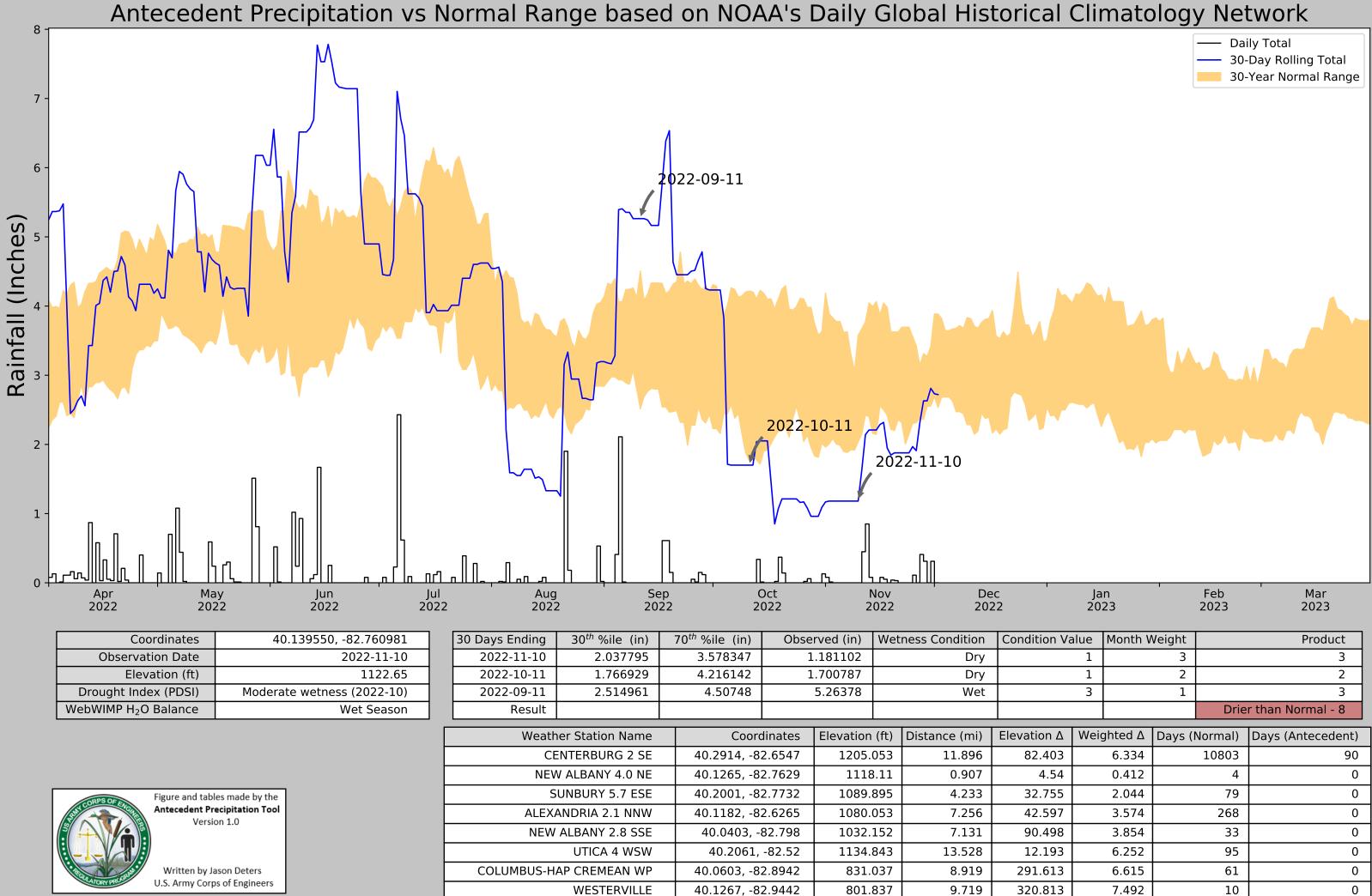
Page 1


May 2020 Revision

ADDITIONAL STREAM INFORMATION (This Information Mus	t Also be Completed):
QHEI PERFORMED? Yes X No QHEI Score (If Yes, Att	tach Completed QHEI form)
DOWNSTREAM DESIGNATED USE(S)	
WWH Name:	Distance from Evaluated Stream
CWH Name:	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WATERSHED A	REA. CLEARLY MARK THE SITE LOCATION.
USGS Quadrangle Name: Jersey NRCS Soil Map Page:	NRCS Soil Map Stream Order:
County: Licking Township/City: Job	instown
MISCELLANEOUS	
Base Flow Conditions? (Y/N): Date of last precipitation:	Quantity:
Photo-documentation Notes:	
Elevated Turbidity? (Y/N): Canopy (% open):0/0/0/0/25%	
Were samples collected for water chemistry? (Y/N): Lab Sample # or ID	(attach results):
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH (S.U.)	Conductivity (umhos/cm)
Is the sampling reach representative of the stream (Y/N) If not, explain:	
Additional comments/description of pollution impacts:	
BIOLOGICAL OBSERVATIONS	
(Record all observations below)	
Fish Observed? (Y/N) Species observed (if known):	
Frogs or Tadpoles Observed? (Y/N) _ / _ Species observed (if known):	
Salamanders Observed? (Y/N) _ M Species observed (if known):	
Aquatic Macroinvertebrates Observed? (Y/N) Species observed (if known):	

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This must be completed)

Comments Regarding Biology:


Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

APPENDIX C USACE ANTECEDENT PRECIPITATION TOOL

Wetland Delineation Report | December 9, 2022

Jan 2023		Feb Mar 2023 2023			
ondition Va	alue	Month V	Veight		Product
	1		3		3
1			2		2
	3		1		3
			Drier than		r than Normal - 8
evation Δ	Weig	hted Δ Days (Normal)		Normal)	Days (Antecedent)
82.403		6.334		10803	90
4.54		0.412		4	0
32.755		2.044		79	0
42.597		3.574		268	0
90.498		3.854		33	0
12.193		6.252		95	0
291.613		6.615		61	0
320.813		7.492		10	0

APPENDIX D PHOTOGRAPHS

Wetland Delineation Report | December 9, 2022

Project No. 22011510A December 9, 2022 Page 1 of 2

Photograph #1: View of Perennial Stream 1.

Photograph #2: View of Intermittent Stream 1.

Project No. 22011510A December 9, 2022 Page 2 of 2

Photograph #3: View of PFO Wetland 2.

Photograph #4: View of Perennial Stream 2.

Colliers Engineering & Design is a trusted provider of multi-discipline engineering, design and consulting services providing customized solutions for public and private clients through a network of offices nationwide.

For a full listing of our office locations, please visit colliersengineering.com

1 877 627 3772

Civil/Site • Traffic/Transportation • Governmental • Survey/Geospatial Infrastructure • Geotechnical/Environmental • Telecommunications • Utilities/Energy Attachment D

List of Landowners and Easements

Appendix D: Right-of-Way Contact List / Affected Property Owners

Franklin County		
Erica C. Crawley	Kevin L. Boyce	
Franklin County Commissioner	Franklin County Commissioner	
President	373 S. High Street	
373 S. High Street	Columbus, Ohio 43215	
Columbus, Ohio 43215		
John O'Grady	Kenneth N. Wilson	
Franklin County Commissioner	Franklin County Administrator	
373 S. High Street	373 S. High Street	
Columbus, Ohio 43215	Columbus, Ohio 43215	
Jennifer Fish	Cornell R. Robertson, P.E., P.S.	
Franklin County Soil and Water	Franklin County Engineer	
Conservation District	970 Dublin Road	
1404 Goodale Boulevard, Suite 100	Columbus, Ohio 43215	
Columbus, Ohio 43212		

City of Columbus			
Hon. Andrew Ginther	Shannon G. Hardin		
City of Columbus Mayor	City of Columbus Council President		
90 W. Broad Street	90 W. Broad Street		
Columbus, Ohio 43215	Columbus, Ohio 43215		
Elizabeth Brown	Emmanuel V. Remy		
City of Columbus, Council President	Columbus City Council		
Pro Tempore	90 W. Broad Street		
90 W. Broad Street	Columbus, Ohio 43215		
Columbus, Ohio 43215			
Scott Messer	Jennifer Gallagher		
City of Columbus Director	City of Columbus Director		
Department of Building and Zoning	Department of Public Service		
Services	111 N. Front Street		
111 N. Front Street	Columbus, Ohio 43215		
Columbus, Ohio 43215			

Plain Township			
Benn Collins	Mary Fee		
Plain Township Administrator	Plain Township		
45 Second Street	Administrative Coordinator		
P.O. Box 273	45 Second Street		
New Albany, OH 43054-0273	P.O. Box 273		
	New Albany, OH 43054-0273		
Bud Zappitelli	Courtney Rodgers		
Plain Township Fiscal Officer	Plain Township Finance Officer		
45 Second Street	45 Second Street		
P.O. Box 273	P.O. Box 273		
New Albany, OH 43054-0273	New Albany, OH 43054-0273		
Dave Ferguson	Keri Mollard		
Plain Township Trustee	Plain Township Trustee		
45 Second Street	45 Second Street		
P.O. Box 273	P.O. Box 273		
New Albany, OH 43054-0273	New Albany, OH 43054-0273		
Jill Beckett-Hill			
Plain Township Trustee			
45 Second Street			
P.O. Box 273			
New Albany, OH 43054-0273			

Licking County			
Rick Black	Timothy E. Bubb		
Licking County Commissioner	Licking County Commissioner		
President	Vice President		
20 South Second Street	20 South Second Street		
Newark, Ohio 43055	Newark, Ohio 43055		
Duane H. Flowers			
Licking County Commissioner			
20 South Second Street			
Newark, Ohio 43055			

Jersey Township		
Jeff Fry	Dan Wetzel	
Jersey Township Trustee	Jersey Township Trustee	
10910 Jug Street	10910 Jug Street	
Johnstown, OH 43031	Johnstown, OH 43031	
Ben Pieper	Marko Jesenko	
Jersey Township Trustee	Jersey Township Fiscal Officer	
10910 Jug Street	10910 Jug Street	
Johnstown, OH 43031	Johnstown, OH 43031	
Rob Platte		
Jersey Township Administrator		
10910 Jug Street		
Johnstown, OH 43031		

City	of New Albany
Scott McAfee	Josh Poland
New Albany Communications and	New Albany
Marketing Director	Public Information Officer
99 W. Main St.	99 W. Main St.
New Albany, OH 43054	New Albany, OH 43054
Sloan Spalding	Marlene Brisk
Mayor of New Albany	New Albany City Council Member
99 W. Main St.	President Pro Tempore
New Albany, OH 43054	99 W. Main St.
	New Albany, OH 43054
Mike Durik	Chip Fellows
New Albany City Council Member	New Albany City Council Member
99 W. Main St.	99 W. Main St.
New Albany, OH 43054	New Albany, OH 43054
Kasey Kist	Matt Shull
New Albany City Council Member	New Albany City Council Member
99 W. Main St.	99 W. Main St.
New Albany, OH 43054	New Albany, OH 43054
Andrea Wiltrout	
New Albany City Council Member	
99 W. Main St.	
New Albany, OH 43054	

Appendix D: Right-of-Way Contact List / Affected Property Owners

Delaware County			
Jeff Benton	Barb Lewis		
Delaware County Commissioner	Delaware County Commissioner		
91 N. Sandusky St.	91 N. Sandusky St.		
Delaware, OH 43015	Delaware, OH 43015		
Gary Merrell	Tracie Davies		
Delaware County Commissioner	Delaware County Administrator		
91 N. Sandusky St.	91 N. Sandusky St.		
Delaware, OH 43015	Delaware, OH 43015		
Jane Hawes	Jennifer Walraven		
Delaware County	Delaware County		
Communications Director	Clerk of the Board		
91 N. Sandusky St.	91 N. Sandusky St.		
Delaware, OH 43015	Delaware, OH 43015		
Harlem Township			
Jerry Paul	Carl Richison		
Harlem County Trustee	Harlem County Trustee		
3883 S. St. Rt. 605	3883 S. St. Rt. 605		
Galena, Ohio 43021	Galena, Ohio 43021		
David Jackson	Lisa Hursey		
Harlem County Trustee	Harlem County Fiscal Officer		
Chairperson	Chairperson		
3883 S. St. Rt. 605	3883 S. St. Rt. 605		
Galena, Ohio 43021	Galena, Ohio 43021		

City of Johnstown		
Donald Barnard	Jon Merriman	
Mayor of Johnstown	Johnstown City Council President	
599 South Main Street	599 South Main Street	
Johnstown, OH 43031	Johnstown, OH 43031	
Sharon Hendren	Ryan Green	
Johnstown City Council	Johnstown City Council	
Acting President	599 South Main Street	
599 South Main Street	Johnstown, OH 43031	
Johnstown, OH 43031		
Charlie Campbell	Nicole Shook	
Johnstown City Council	Johnstown City Council	
599 South Main Street	599 South Main Street	
Johnstown, OH 43031	Johnstown, OH 43031	
Bob Orsini		
Johnstown City Council		
599 South Main Street		
Johnstown, OH 43031		

Attachment E

Threatened and Endangered Memorandum

Memorandum

To:	NiSource Inc.
From:	Jacqueline M. McCort
Date:	December 10 th , 2022
Subject:	Threatened and Endangered Species Review
	Intel Project Slice
Project No.:	22011510A

On behalf of NiSource Inc., Colliers Engineering & Design (CED) conducted a Threatened and Endangered Species Desktop Review for the NiSource Intel Project located north of Columbus, Ohio within Delaware, Licking, and Franklin Counties (hereinafter referred to as "Project Study Area"). The proposed Project will be approximately 21,891 feet (4.15 miles) in length and consist of construction of a Point of Delivery (POD) Station with launcher/receiver facilities, a 12-inch diameter high pressure gas distribution pipeline, a district regulator station (DS), and one new customer regulator/meter station (GMB) at the Intel (customer) plant. The Project will allow NiSource Inc. to provide required natural gas for Intel's Dragonfly Project.

The Project Study Area is comprised of a 100-foot wide survey corridor centered on the proposed pipeline alignment for 4.15 miles. The Project Study Area begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and ends at latitudinal 40.118155 N and longitudinal coordinates -82.722537 W. Access to the Project Study Area can be achieved from Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW. The Project Study Area is located in Johnstown, Ohio (Figure 1, **Appendix A**). Based on a review of the *Jersey, New Albany, and Sunbury Ohio* Quadrangle USGS Map and historical aerial photographs, the Project Study Area appears to be mainly residential properties and agricultural land. The Project Study Area is relatively flat with elevations that range from 1150 to 1200 feet above mean sea level (MSL). The Project Study Area is located in the Eastern Corn Belt Plains ecoregion.

Some populations of plants and animals are declining because of natural forces or their inability to coexist with human activity. Plants and animals with Endangered or Threatened status are protected under the Endangered Species Act (ESA) of 1973 (16 US 1531 et seq.). Federal Species of Concern (FSC) are species not legally protected under the ESA and are not subject to any of its provisions, including Section 7, until they are formally proposed or listed as Endangered or Threatened.

CED conducted a threatened and endangered species review to become aware of the potential presence of Endangered or Threatened listed species that are located within the Project Study Area

Project No. 22011510A December 10, 2022 Page 2 | 10

or within the vicinity. The Ohio Department of Natural Resources (ODNR) web page was reviewed to determine species that have State protection in Delaware, Licking, and Franklin Counties, within the state of Ohio. Tables 1, 2, and 3 list species that, as of November 21st, 2022, have State protection in Delaware, Licking, and Franklin Counties, in the state of Ohio. In addition to the review of online county species lists, CED submitted a request on November 14th, 2022, to the ODNR requesting an environmental review of the potential State-listed species that could occur within the project limits (**Appendix B**). This memo will be updated once comments are received from ODNR. In addition, a refined search, using the USFWS Information for Planning and Consultation (IPaC) database, was also reviewed to provide a more detailed list of species and critical habitat under USFWS jurisdiction that are known or expected to occur within the Project Study Area. Table 4 provides the USFWS IPaC Species List for Project Study Area. The USFWS IPaC Species List is provided in **Appendix C**.

Common Name	Scientific Name	State Status	Federal Status	
Mammals				
Northern Long-eared Bat	Myotis septentrionalis	Т	Т	
Big Brown Bat	Eptesicus fuscus	SC	-	
Red Bat	Lasiurus borealis	SC	-	
Prairie Vole	Microtus ochrogaster	SC	-	
Little Brown Bat	Myotis lucifugus	SC	-	
Tri-colored Bat	Perimyotis subflavus	SC	-	
Deer Mouse	Peromyscus maniculatus	SC	-	
Badger	Taxidea taxus	SC	-	
	Birds			
American Bittern	Botaurus lentiginosus	E	-	
Lark Sparrow	Chondestes grammacus	E	-	
Black-crowned Night-	Nycticorax nycticorax	Т	_	
Heron				
Sharp-shinned Hawk	Accipiter striatus	SC	-	
Henslow's Sparrow	Ammodramus henslowii	SC	-	
Grasshopper Sparrow	Ammodramus savannarum	SC	-	
Common Nighthawk	Chordeiles minor	SC	-	
Black-billed Cuckoo	Coccyzus erythropthalmus	SC	-	
Northern Bobwhite	Colinus virginianus	SC	-	
Bobolink	Dolichonyx oryzivorus	SC	-	
American Coot	Fulica americana	SC	-	
Red-headed Woodpecker	Melanerpes erythrocephalus	SC	-	
Vesper Sparrow	Pooecetes gramineus	SC	-	
Sora Rail	Porzana carolina	SC	-	
Prothonotary Warbler	Protonotaria citrea	SC	-	
Virginia Rail	Rallus limicola	SC	-	
Cerulean Warbler	Setophaga cerulea	SC	-	

Table 1. ODNR Delaware County Species List as of November 21st, 2022

Project No. 22011510A December 10, 2022 Page 3 | 10

Canada Warbler	Cardellina canadensis	SI	_	
Veery	Catharus fuscescens	SI -		
Hermit Thrush	Catharus guttatus	SI		
Brown Creeper	Certhia americana	SI	-	
		SI	-	
Least Flycatcher	Empidonax minimus		-	
Dark-eyed Junco Yellow-crowned	Junco hyemalis	SI	-	
Night-heron	Nyctanassa violacea	SI	-	
Golden-crowned Kinglet	Regulus satrapa	SI	-	
Magnolia Warbler	Setophaga magnolia	SI	-	
Red-breasted Nuthatch	Sitta canadensis	SI	-	
	Insects			
Marsh Bluet	Enallagma ebrium	Т	-	
	Fish			
Western Creek Chubsucker	Erimyzon claviformis	SC	-	
Muskellunge	Esox masquinongy	SC	-	
Least Darter	Etheostoma microperca	SC	-	
Blue Catfish	Ictalurus furcatus	SC	-	
Clams/Mollusk				
Snuffbox	Epioblasma triquetra	E	E	
Clubshell	Pleurobema clava	E	E	
Ohio Pigtoe	Pleurobema cordatum	E	-	
Rabbitsfoot	Theliderma cylindrica	E	Т	
Rayed Bean	Villosa fabalis	E E		
Black Sandshell	Ligumia recta	T -		
Pondhorn	Uniomerus tetralasmus	T -		
Elktoe	Alasmidonta marginata	SC	-	
Purple Wartyback	Cyclonaias tuberculata	SC	-	
Wavy-rayed Lampmussel	Lampsilis fasciola	SC	-	
Round Pigtoe	Pleurobema sintoxia	SC	-	
Kidneyshell	Ptychobranchus fasciolaris	SC	-	
Salamander Mussel	Simpsonaias ambigua	SC	-	
	Reptiles/Amphibians			
Eastern Cricket Frog	Acris crepitans	SC	-	
Four-toed Salamander	Hemidactylium scutatum	SC	-	
Queensnake	Regina septemvittata	SI -		
Flowering Plants				
Gattinger's-foxglove	Agalinis gattingeri	Т	-	
Narrow-leaved Toothwort	Cardamine dissecta	Р	-	
Tufted Fescue Sedge	Carex brevior	Р	-	
False Hop Sedge	Carex lupuliformis	Р	-	

Project No. 22011510A December 10, 2022 Page 4 | 10

Timid Sedge	Carex timida	Т	-
Spotted Coral-root	Corallorhiza maculata	Р	-
Tennessee Bladder Fern	Cystopteris tennesseensis	Р	-
Grove Sandwort	Moehringia lateriflora	Р	-
Showy Goldenrod	Solidago speciosa	Р	-
Shining Ladies' tresses	Spiranthes lucida	Р	-
Arbor Vitae	Thuja occidentalis	Р	-

Notes: E – Endangered.; T – Threatened.; X – Extirpated.; P – Proposed Threatened.; C – Candidate Species.; SC – Species of Concern.; SI – Special Interest

Table 2. ODNR Licking County Species List as of November 21st, 2022

Common Name	Scientific Name State Status		Federal Status
	Mammals		
Black Bear	Ursus americanus	E	-
Northern Long-eared Bat	Myotis septentrionalis	Т	Т
Big Brown Bat	Eptesicus fuscus	SC	-
Red Bat	Lasiurus borealis	SC	-
Hoary Bat	Lasiurus cinereus	SC	-
Little Brown Bat	Myotis lucifugus	SC	-
Tri-colored Bat	Perimyotis subflavus	SC	-
Deer Mouse	Peromyscus maniculatus	SC	-
Badger	Taxidea taxus	SC	-
Common Gray Fox	Urocyon cinereoargenteus	SC	-
	Birds		
Upland Sandpiper	Bartramia longicauda	E	-
Northern Harrier	Circus hudsonius	E	-
Least Bittern	Ixobrychus exilis	T -	
Barn Owl	Tyto alba	T -	
Sharp-shinned Hawk	Accipiter striatus	SC -	
Henslow's Sparrow	Ammodramus henslowii	SC -	
Grasshopper Sparrow	Ammodramus savannarum	SC	-
Great Egret	Ardea alba	SC	-
Common Nighthawk	Chordeiles minor	SC	-
Sedge Wren	Cistothorus platensis	SC	-
Black-billed Cuckoo	Coccyzus erythropthalmus	SC -	
Northern Bobwhite	Colinus virginianus	SC -	
Bobolink	Dolichonyx oryzivorus	SC -	
Red-headed Woodpecker	Melanerpes erythrocephalus	SC	-
Vesper Sparrow	Pooecetes gramineus	SC	-
Sora Rail	Porzana carolina	SC	-
Prothonotary Warbler	Protonotaria citrea	SC	-

Project No. 22011510A December 10, 2022 Page 5 | 10

Cerulean Warbler	Setophaga cerulea	SC	-
Northern Saw-whet Owl	Aegolius acadicus	SI	-
Veery	Catharus fuscescens	SI	-
Brown Creeper	Certhia americana	SI	-
Magnolia Warbler	Setophaga magnolia	SI	-
	Insects		
Green-faced Clubtail	Gomphus viridifrons	Т	-
Tiger Spiketail	Cordulegaster erronea	SC	-
	Fish		
Lake Chubsucker	Erimyzon sucetta	Т	-
Muskellunge	Esox masquinongy	SC	-
	Invertebrates		
Fawnsfoot	Truncilla donaciformis	Т	-
	Clams/Mollusk		
Longsolid	Fusconaia subrotunda	E	-
Sheepnose	Plethobasus cyphyus	E	E
Pondhorn	Uniomerus tetralasmus	Т	-
	Reptiles/Amphibians		
Eastern Hellbender	Cryptobranchus alleganiensis	E	-
Eastern Massasauga	Sistrurus catenatus	E	Т
Spotted Turtle	Clemmys guttata	Т	-
Four-toed Salamander	Hemidactylium scutatum	SC	-
Eastern Cricket Frog	Acris crepitans	SC	-
Eastern Box Turtle	Terrapene carolina	SC	-
	Flowering Plants		
Grass-pink	Calopogon tuberosus	Р	-
Howe's Sedge	Carex atlantica ssp. capillacea	Р	-
Cypress-knee Sedge	Carex decomposita	E	-
Mud Sedge	Carex limosa	Т	-
Lined Sedge	Carex striatula	E	-
Low Umbrella-sedge	Cyperus diandrus	Р	-
Tennessee Bladder Fern	Cystopteris tennesseensis	Р	-
Slender Spike-rush	Eleocharis tenuis	Т	-
Tawny Cotton-grass	Eriophorum virginicum	Т	-
Green Cotton-grass	Eriophorum viridicarinatum	Р	-
Appalachian Club-moss	Huperzia appalachiana	Х	-
Buckbean	Menyanthes trifoliata	Т	-
Grove Sandwort	Moehringia lateriflora	Р	-
American Water-milfoil	Myriophyllum sibiricum	E	-
Rose Pogonia	Pogonia ophioglossoides	Т	-
Tall Cinquefoil	Potentilla arguta	E	-

White Beak-rush	Rhynchospora alba	Р	-
Smooth Rose	Rosa blanda	Rosa blanda P	
Scheuchzeria	Scheuchzeria palustris	E	-
Rock Spike-moss	Selaginella rupestris	Х	-
Three Birds Orchid	Triphora trianthophora	Р	-
Lesser Bladderwort	Utricularia minor	Т	-

Notes: E – Endangered.; T – Threatened.; X – Extirpated.; P – Proposed Threatened.; C – Candidate Species.; SC – Species of Concern.; SI – Special Interest

Table 3. ODNR Franklin County Species List as of November 21st, 2022

Common Name	Scientific Name	State Status	Federal Status	
	Mammals			
Indiana Myotis	Myotis sodalis	E	E	
Black Bear	Ursus americanus	E	-	
Northern Long-eared Bat	Myotis septentrionalis	Т	Т	
Star-nosed Mole	Condylura cristata	SC	-	
Big Brown Bat	Eptesicus fuscus	SC	-	
Red Bat	Lasiurus borealis	SC	-	
Hoary Bat	Lasiurus cinereus	SC	-	
Snowshoe Hare	Lepus americanus	SC	-	
Woodland Vole	Microtus pinetorum	SC	-	
Ermine	Mustela erminea	SC	-	
Little Brown Bat	Myotis lucifugus	SC	-	
Tri-colored Bat	Perimyotis subflavus	SC	-	
Deer Mouse	Peromyscus maniculatus	SC	-	
Smoky Shrew	Sorex fumeus	SC	-	
Southern Bog Lemming	Synaptomys cooperi	SC	-	
Badger	Taxidea taxus	SC	-	
Common Gray Fox	Urocyon cinereoargenteus	SC	-	
Evening Bat	Nycticeius humeralis	SI	-	
American Bison	Bison	Х	-	
	Birds			
Upland Sandpiper	Bartramia longicauda	E	-	
American Bittern	Botaurus lentiginosus	E	-	
Cattle Egret	Bubulcus ibis	E	-	
Lark Sparrow	Chondestes grammacus	E	-	
Northern Harrier	Circus hudsonius	E	-	
Sandhill Crane	Grus canadensis	Т	-	
Least Bittern	Ixobrychus exilis	Т	-	
Black-crowned Night- Heron	Nycticorax nycticorax	Т -		
Barn Owl	Tyto alba	Т	-	

Project No. 22011510A December 10, 2022 Page 7 | 10

Sharp-sinned HawkAccipiter striatusSCHenslow's SparrowAmmodramus henslowiiSCGrasshopper SparrowAmmodramus savannarumSCGreat EgretArdea albaSCCommon NighthawkChordeiles minorSCSedge WrenCistothorus platensisSCBlack-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCVesper SparrowPooecetes gramineusSCVesper SparrowPooecetes gramineusSCVesper SparrowProtonotaria citreaSCVirginia RailRallus limicolaSCCerulean WarblerSetophaga ceruleaSC	- - - -
Grasshopper SparrowAmmodramus savannarumSCGreat EgretArdea albaSCCommon NighthawkChordeiles minorSCSedge WrenCistothorus platensisSCBlack-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCVirginia RailRallus limicolaSC	-
Great EgretArdea albaSCCommon NighthawkChordeiles minorSCSedge WrenCistothorus platensisSCBlack-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCVirginia RailRallus limicolaSC	-
Common NighthawkChordeiles minorSCSedge WrenCistothorus platensisSCBlack-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Sedge WrenCistothorus platensisSCBlack-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Black-billed CuckooCoccyzus erythropthalmusSCNorthern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	
Northern BobwhiteColinus virginianusSCBobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
BobolinkDolichonyx oryzivorusSCAmerican CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
American CootFulica americanaSCCommon GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Common GallinuleGallinula galeataSCRed-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Red-headed WoodpeckerMelanerpes erythrocephalusSCVesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Vesper SparrowPooecetes gramineusSCSora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Sora RailPorzana carolinaSCProthonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Prothonotary WarblerProtonotaria citreaSCVirginia RailRallus limicolaSC	-
Virginia Rail Rallus limicola SC	-
· · · · · · · · · · · · · · · · · · ·	-
	-
Northern Shoveler Anas clypeata SI	-
Green-Winged Teal Anas crecca SI	-
American Black Duck Anas rubripes SI	-
Veery Catharus fuscescens SI	-
Hermit Thrush Catharus guttatus SI	-
Brown Creeper Certhia americana SI	-
Least Flycatcher Empidonax minimus SI	-
Wilsons Snipe Gallinago delicata SI	-
Dark-eyed JuncoJunco hyemalisSI	-
Yellow-crowned Night- Nyctanassa violacea SI	-
Heron	
Nashville WarblerOreothlypis ruficapillaSI	-
Northern Waterthrush Parkesia noveboracensis SI	-
Golden-crowned KingletRegulus satrapaSI	-
Blackburnian WarblerSetophaga fuscaSI	-
Magnolia WarblerSetophaga magnoliaSI	-
Red-breasted NuthatchSitta canadensisSI	-
Yellow-bellied SapsuckerSphyrapicus variusSI	-
Winter WrenTroglodytes hiemalisSI	-
Golden-winged Warbler Vermivora chrysoptera SI	-
Bell's VireoVireo belliiSI	-
Insects	
- Chimarra socia E	
Two-spotted SkipperEuphyes bimaculaSC	-

Project No. 22011510A December 10, 2022 Page 8 | 10

_	Agroperina lutosa	SC	_		
Precious Underwing	Catocala pretiosa				
Slender Clearwing	Hemaris gracilis	SI			
Siender clearwing	Fish				
lowa Darter	Etheostoma exile	E			
Spotted Darter	Etheostoma maculatum	E	-		
Tonguetied Minnow	Exoglossum laurae	E	-		
Goldeye	Hiodon alosoides	E	-		
		E	-		
Northern Brook Lamprey Shortnose Gar	Ichthyomyzon fossor	E	-		
	Lepisosteus platostomus	E	-		
Popeye Shiner Lake Chubsucker	Notropis ariommus	T	-		
	Erimyzon sucetta	T	-		
Tippecanoe Darter	Etheostoma tippecanoe		-		
Paddlefish	Polyodon spathula	Т	-		
Muskellunge	Esox masquinongy	SC	-		
Blue catfish	Ictalurus furcatus	SC	-		
Blacknose Shiner	Notropis heterolepis	X	-		
Longhead Darter	Percina macrocephala	Х	-		
	Clams/Mollusk	_			
Butterfly	Ellipsaria lineolata	E	-		
Elephant-ear	Elliptio crassidens	E	-		
Purple Cat's paw	Epioblasma obliquata	E	E		
Snuffbox	Epioblasma triquetra	E	E		
Longsolid	Fusconaia subrotunda	E -			
Pink Mucket	Lampsilis abrupta	E E			
Pocketbook	Lampsilis ovata	E -			
Washboard	Megalonaias nervosa	E	-		
Clubshell	Pleurobema clava	E	E		
Ohio Pigtoe	Pleurobema cordatum	E	-		
Rabbitsfoot	Theliderma cylindrica	E			
Rayed Bean	Villosa fabalis	E	E		
Black Sandshell	Ligumia recta	T	-		
Threehorn Wartyback	Obliquaria reflexa	T	-		
Fawnsfoot	Truncilla donaciformis	T	-		
Pondhorn	Uniomerus tetralasmus	T -			
Elktoe	Alasmidonta marginata	SC	-		
Purple Wartyback	Cyclonaias tuberculata	SC	-		
Wavy-rayed Lampmussel	Lampsilis fasciola	SC	-		
Creek Heelsplitter	Lasmigona compressa	SC	-		
Round Pigtoe	Pleurobema sintoxia	SC	-		
Kidneyshell	Ptychobranchus fasciolaris	SC	-		

Project No. 22011510A December 10, 2022 Page 9 | 10

Deertoe	Truncilla truncata	SC	_
Mucket	Actinonaias ligamentina ligamentina	Х	-
Rough Pigtoe	Pleurobema plenum	Х	-
	Reptiles/Amphibians		
Smooth Greensnake	Opheodrys vernalis	Е	-
Eastern Cricket Frog	Acris crepitans crepitans	SC	-
Four-toed Salamander	Hemidactylium scutatum	SC	-
	Flowering Plants		
American Sweet-flag	Acorus americanus	Р	-
Gattinger's-foxglove	Agalinis gattingeri	Т	-
Spreading Rock Cress	Arabis patens	Е	-
Prairie False Indigo	Baptisia lacteal	Р	-
Prairie Brome	Bromus kalmii	Р	-
Pale Umbrella-sedge	Carex acuminatus	Е	-
Cypress-knee Sedge	Carex decomposita	Р	-
Tall Larkspur	Delphinium exaltatum	Р	-
One-sided Rush	Juncus secundus	Р	-
Scaly Blazing-star	Liatris squarrosa	Р	-
Weak Spear Grass	Poa saltuensis ssp. languida	Р	-
Abor Vitae	Thuja occidentalis	Р	-
Three Birds Orchid	Triphora trianthophora	Р	-
Rock Elm	Ulmus thomasii	Р	-

Notes: E – Endangered.; T – Threatened.; X – Extirpated.; P – Proposed Threatened.; C – Candidate Species.; SC – Species of Concern.; SI – Special Interest

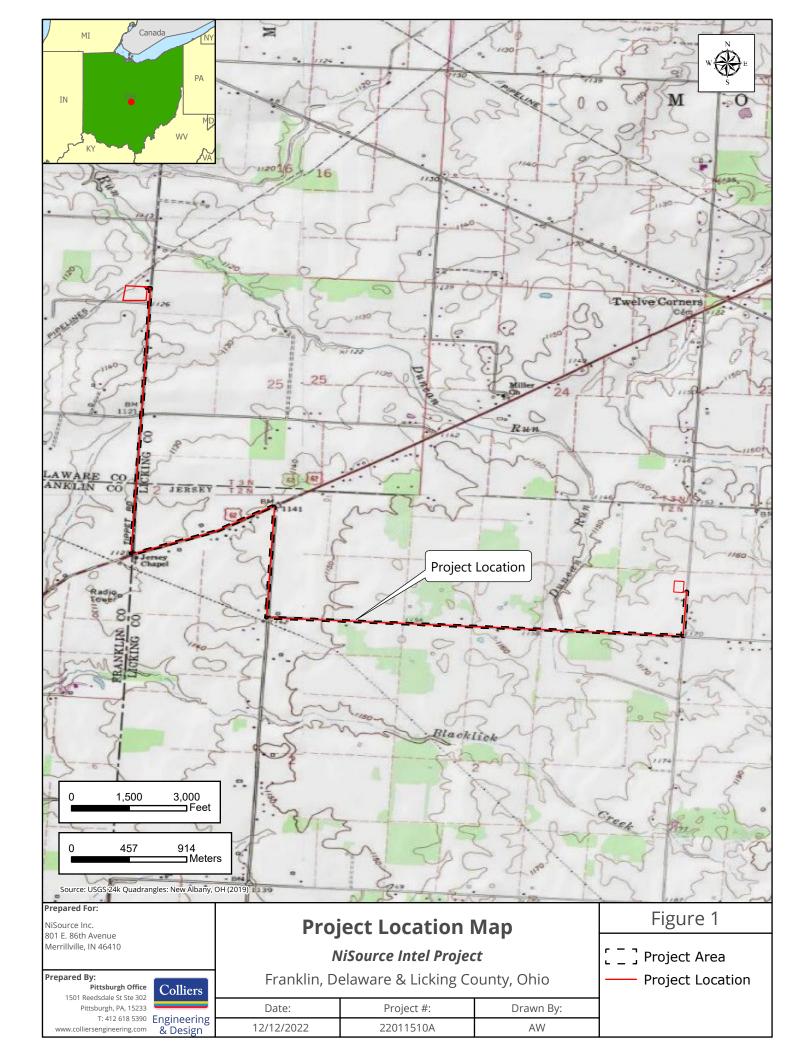
Table 4. USFWS	IPaC Species	List for Pro	ject Study Area
----------------	--------------	---------------------	-----------------

Common Name	Scientific Name	Status	
	Insects		
Monarch Butterfly	Danaus plexippus	С	
Mammals			
Indiana Bat	Myotis sodalis	E	
Northern Long-eared	Myotis septentrionalis	Т	
Bat			
Tricolored Bat	Perimyotis subflavus	PE	

Notes: E – Federally Endangered.; T – Federally Threatened.; PE – Proposed Endangered.; PT – Proposed Threatened.; C – Candidate Species.

A Threatened and Endangered Species Desktop Review was conducted for the Intel Project Slice. The Project Study Area is generally within agricultural and residential developed land uses. All construction activities, with the exception of the Point of Delivery (POD) Station with launcher/receiver facilities, and new customer regulator/meter station (GMB) at the Intel (customer) plant, will be located

Project No. 22011510A December 10, 2022 Page 10 | 10


in the existing roadway. The POD location is presently under agricultural use and the GMB location is under agricultural use. In summary, the comprehensive database search determined there is the potential for two (2) species with current federal protection to occur within the Project Study Area.

Project No. 22011510A December 10, 2022

APPENDIX A

Accelerating success.

Project No. 22011510A December 10, 2022

APPENDIX B

1501 Reedsdale Street Suite 302 Pittsburgh, PA 15233 Main: 877 627 3772

Via Email

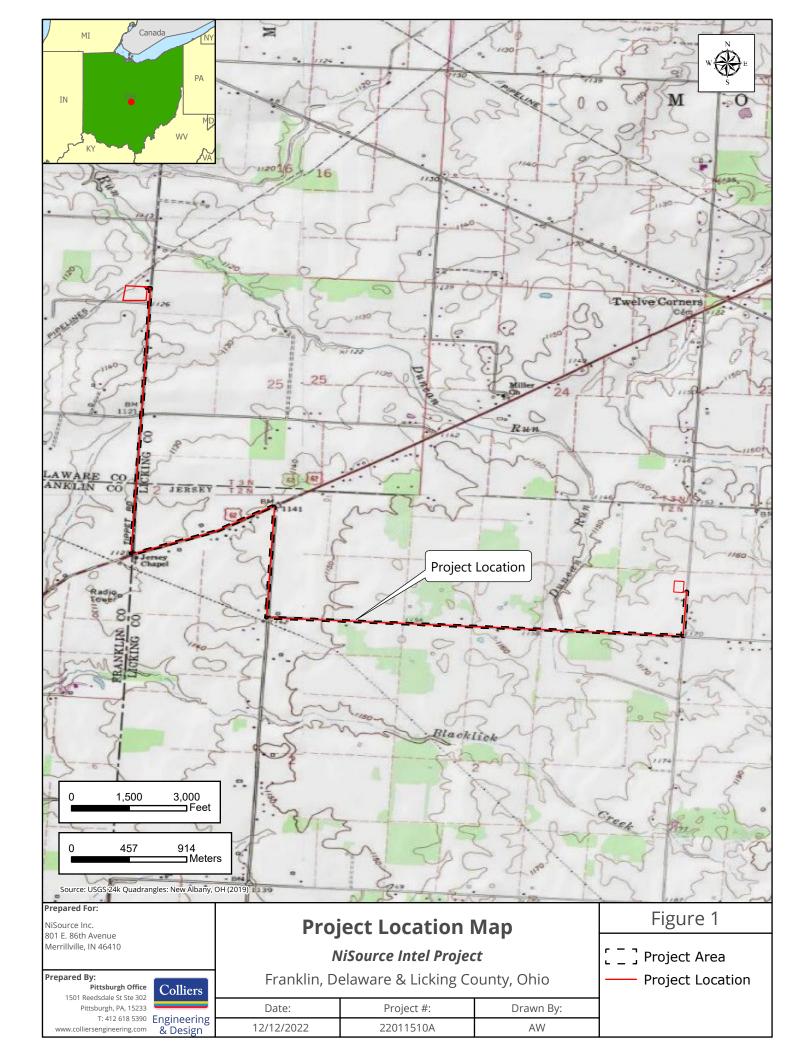
November 14th, 2022

Mike Pettegrew Environmental Review Coordinator Ohio Department of Natural Resources 2045 Morse Rd., Bldg. E-2 Columbus, OH 43229

Request for Environmental Review NiSource Intel Project Franklin, Delaware, and Licking Counties, Ohio Colliers Engineering & Design Project No.: 22011510A

Dear Mr. Pettegrew:

Colliers Engineering & Design, Inc. (DBA Maser Consulting) is submitting this letter for Environmental Review of the NiSource Intel Project located northeast of New Albany within Franklin, Delaware, and Licking Counties, Ohio. The NiSource Intel Project includes the installation of a Point-of-Delivery facility (POD) and 4-miles of pipeline with alternate routes. The Project Study Area is within existing DOT right-of-ways along Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW. The Project Study Area or "Survey Corridor" begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and end at coordinates 40.114770 N and longitudinal coordinates -82.722806 W. The Project Study Area or "Survey Corridor" is situated within an area characterized by mainly residential properties, agricultural land, and small forested areas. The Project Study Area is located in the Eastern Corn Belt Plains ecoregion.


Very truly yours,

COLLIERS ENGINEERING & DESIGN, INC. (DBA MASER CONSULTING)

Tanner Dickson Environmental Specialist, Natural Resources

Enclosures

R:\Projects\2022\22011510A\Reports\Ecological\T&E\Ohio DNR

Project No. 22011510A December 10, 2022

APPENDIX C

United States Department of the Interior

FISH AND WILDLIFE SERVICE Ohio Ecological Services Field Office 4625 Morse Road, Suite 104 Columbus, OH 43230-8355 Phone: (614) 416-8993 Fax: (614) 416-8994

In Reply Refer To: Project Code: 2023-0023879 Project Name: Intel Project Slice December 10, 2022

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological

evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/ executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Ohio Ecological Services Field Office 4625 Morse Road, Suite 104 Columbus, OH 43230-8355 (614) 416-8993

Project Summary

Project Code:2023-0023879Project Name:Intel Project SliceProject Type:Natural Gas DistributionProject Description:POD station, 4.15 miles of natural gas pipeline, GMB stationProject Location:Vertice Station

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@40.12834525,-82.76174606876853,14z</u>

Counties: Delaware , Franklin , and Licking counties, Ohio

Endangered Species Act Species

There is a total of 4 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME	STATUS
Indiana Bat <i>Myotis sodalis</i> There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/5949</u>	Endangered
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	Endangered
Tricolored Bat <i>Perimyotis subflavus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/10515</u>	Proposed Endangered
Insects NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i> No critical habitat has been designated for this species.	Candidate

Critical habitats

Species profile: https://ecos.fws.gov/ecp/species/9743

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC User Contact Information

Agency:	Colliers Engineering & Design
Name:	Jacqueline McCort
Address:	5275 Parkway Plaza Blvd
Address Line 2:	Suite 100
City:	Charlotte
State:	NC
Zip:	28217
Email	jacqueline.mccort@collierseng.com
Phone:	9808903019

Attachment F

Maintenance of Traffic Plan

Attachment G

Cultural Resources Report

Engineering & Design

Cultural Resource Desktop Review

Intel Project Slice

Colliers Engineering & Design Project Number: 22011510A

December 12, 2022

Prepared for:

NiSource Inc. 801 E. 86th Avenue Merrillville, IN 4<u>6410</u> Prepared by:

Colliers Engineering & Design, Inc. (DBA Maser Consulting) 1501 Reedsdale St Suite 302, Pittsburgh, PA 15233 Main: (412) 618-5390 **Colliersengineering.com**

Table of contents

1.0	PURPOSE OF DOCUMENT	1
2.0 2.1 2.2 2.3	INTRODUCTION Project Description Project Location Existing Conditions and Vicinity Characteristics	2 2
3.0 3.1 3.2	ENVIRONMENTAL BACKGROUND Physiography and Geology Topography and Soils	3 3
4.1 4.2	CULTURAL RESOURCE DESKTOP REVIEW Previously Conducted Cultural Resource Surveys Previously Recorded Cultural Resources Historic Topographic Maps and Aerial Imagery	4 5
5.0	SUMMARY AND RECOMMENDATIONS	9
6.0	REFERENCES1	0

APPENDICES

APPENDIX A	-	PROJECT LOCATION MAP
APPENDIX B	-	CULTURAL RESOURCE DESKTOP REVIEW RESULTS

List of Tables

Table 1. Soil Types in the Project area	.3
Table 2. Previously conducted cultural resource surveys within 1-mile (1.6-km) of the Project area	.4
Table 3. Previously recorded cultural resources within 1-mile (1.6 km) of the Project area	. 5

1.0 PURPOSE OF DOCUMENT

Colliers Engineering & Design (CED) was contracted by NiSource Inc. (NiSource) to perform a cultural resource background review for the Intel Project Slice (Project) north of Columbus, within Delaware, Licking, and Franklin Counties, Ohio. This background review and desktop assessment has been prepared in accordance with Section 106 of the National Historic Preservation Act (NHPA) of 1966. This regulation requires project proponents to consider a project's effects on historic properties depending on potential permitting requirements and/or funding sources. The purpose of the document is to outline any previously recorded cultural resources that may be impacted by the proposed Project in support of NiSource's compliance with Section 106 of the NHPA. The goal is also to provide information for project planning and development, as well as estimates on possible future work that may be required for regulatory compliance. A cultural resources survey was not conducted as an element of this research.

2.0 INTRODUCTION

2.1 PROJECT DESCRIPTION

The proposed Project will be approximately 4.15 miles (6.68 kilometers [km]) in length and will consist of the construction of a Point of Delivery (POD) Station with launcher/receiver facilities, a 12-inch diameter high pressure gas distribution pipeline, a district regulator station (DS), and one new customer regulator/meter station (GMB) at the Intel (customer) plant. The Project will allow NiSource to provide required natural gas for Intel's Dragonfly Project. The Project area is comprised of a 100-foot-wide survey corridor centered on the proposed pipeline alignment for 4.15 miles.

2.2 PROJECT LOCATION

The Project area begins at latitudinal coordinates 40.139550 N and longitudinal coordinates -82.760981 W and ends at latitudinal coordinates 40.118155 N and longitudinal coordinates -82.722537 W. Access to the Project area can be achieved from Tippet Road, Johnstown Utica Road, Beech Road NW, and Miller Road NW. The Project is depicted on the *Jersey, New Albany, and Sunbury*, Ohio US Geological Survey (USGS) 7.5-minute topographic quadrangle maps.

2.3 EXISTING CONDITIONS AND VICINITY CHARACTERISTICS

The Project area consists mostly of residential properties and agricultural land. The Project area is bordered on all sides by further residential development and agricultural land and has been heavily disturbed by road construction throughout the years.

3.0 ENVIRONMENTAL BACKGROUND

3.1 Physiography and Geology

The Project area is in the Loamy, High Lime Till Plains ecoregion of the Eastern Corn Belt Plains physiographic province of Ohio. The Loamy, High Lime Till Plains ecoregion covers most of southwestern Ohio all the way through central Indiana. This ecoregion is flat to rolling and has outwash plains and terminal moraines glacial features. Soils are loamy on lime-rich glacial till. The Project area is underlain by Wisconsinan glacial deposits consisting of mostly loam. Most of the forests have been cleared for agriculture and now the area is utilized mostly for soybean, corn, and livestock production (Woods, et al. 1998).

The Project is underlain by the Sunbury shale, Maxville limestone, Logan formation, and Cuyahoga formations Undivided geological formations. The Sunbury shale consists of carbonaceous shale of the Mississippian age. The Maxville limestone, Logan formation, and Cuyahoga formations consists of "limestone overlying interbedded shale and sandstone" of the Mississippian age (ONDR 2022).

3.2 TOPOGRAPHY AND SOILS

The Natural Resources Conservation Service (NRCS) Soil Survey for Delaware, Licking, and Franklin Counties, Ohio available on the Web Soil Survey, identifies three (3) soil types underlying the Project area (**Table 1**). Soils range from very poorly drained to somewhat poorly drained (NRCS 2022).

Table 1. Soil Types in the Project area

Soil Symbol	Soil Name	Slope %	Drainage	Landform
BeA	Bennington silt loam	0-2	Somewhat poorly drained	loamy till of medium lime content
BeB	Bennington silt loam	2-6	Somewhat poorly drained	loamy till of medium lime content
PE	Pewamo silty clay loam	0-2	Very poorly drained	Till on moraines

4.0 CULTURAL RESOURCE DESKTOP REVIEW

The following information was gathered as part of the desktop review to identify previously recorded cultural resources within a 1-mile (1.6-km) radius of the Project area. The background review consisted of a cultural resources and literature review of the Project area. A CED archaeologist reviewed the online database hosted by the Ohio History Connection (OHC), the State Historic Preservation Office (SHPO) of Ohio, for any previously recorded surveys, historic or prehistoric sites, and cemeteries located in or near the Project. Site files, relevant maps, and National Register of Historic Places (NRHP) locations were also examined. Aerial photographs, topographic maps, and the NRCS Web Soil Survey were also examined for historical and environmental information related to the Project area.

4.1 PREVIOUSLY CONDUCTED CULTURAL RESOURCE SURVEYS

The background review revealed that one (1) previous archaeological survey intersects the Project area at the end of the driveway at 13757 Miller Road in Johnstown. "Phase I Archaeological Investigations for the Approximately 86.7 km (53.9 mi) Conesville 345kV Transmission Line Widening Project in Franklin, Licking, Muskingum, and Coshocton Counties, Ohio" was conducted in 2020 by Weller & Associates, Inc. Several other surveys have also been conducted within 1-mile (1.6-km) radius of the Project area. They are summarized below (**Table 2**).

Report Name	Investigating Firm	Date of Survey	Distance to Project Area
Phase I Archaeological Investigations for the Approximately 86.7 km (53.9 mi) Conesville 345kV Transmission Line Widening Project in Franklin, Licking, Muskingum, and Coshocton Counties, Ohio	Weller & Associates, Inc.	2020	Intersects
Phase I Archaeological Investigations for the Approximately 9.7 km (6.0 mi) Jug Corridor 345 kV Line Rebuild Project in Plain Township, Franklin County and Jersey Township, Licking County, Ohio	Weller X, Associates Inc	2017	0.51 mile (0.82 km)
Phase I Cultural Resources Management Investigations for the 484.5 ac. Project Jug Street in the City of New Albany, Licking County, Ohio	EMH&T, Inc.	2019	0.51 mile (0.82 km)
Phase I History/Architecture Survey for the S.R. 161/37 Improvement Project (FRA/LIC-161/37-23.15/0.00 [11.75]; PID 12139) Addendum Examining the Extension of the Project Area	ASC Group, Inc.	2002	0.65 mile (1.04 km)
Phase II Evaluative Testing for Archaeological Sites 33- LI-2466, 2475, 2491 and 2509 located in the 484.5 ac. Project Jug Street in the City of New Albany, Licking County, Ohio	EMH&T, Inc.	2020	0.65 mile (1.04 km)

Table 2. Previously conducted cultural resource surveys within 1-mile (1.6-km) of the Project area.

Report Name	Investigating Firm	Date of Survey	Distance to Project Area
Phase I History/Architecture Survey for the S.R. 161/37 Improvement Project (FRA/LIC-161/37-23.15/0.00 [11.75]; PID 12139)	ASC Group, Inc.	2001	0.64 mile (1.03 km)
Phase I Cultural Resource Management Survey of a Proposed 4.2 ha (10.3 a.) Wetland Restoration Project in Plain Township, Franklin County, Ohio	Professional Archaeological Services Team	2009	0.94 mile (1.51 km)

4.2 PREVIOUSLY RECORDED CULTURAL RESOURCES

Based on the review, there are no archaeological sites nor above-ground historic resources documented within the Project area; however, there are multiple cultural resources documented within a 1-mile (1.6-km) radius of Project area. These resources are summarized below (**Table 3**).

OHI/OAI Number	Name of Resource	Date of Significance / Temporal	Address	Distance to Project Area
2916	Hanover-Snipetown Cemetery	Historic	0.2 mile east of TR 29 (Green-Cooke Road). 40 feet south of CR 20 (Fancher Road)	0.81-Mile (1.3 km)
FRA0232705	Tippet House	1860	11681 Johnstown Rd	0.30-Mile (0.48 km)
FR3075	Archaeological Site	Unknown Prehistoric	N/A	0.48-Mile (0.77 km)
FR3074	Archaeological Site	Unknown Prehistoric	N/A	0.95-Mile (1.53 km)
LI2243	Archaeological Site	Unknown Prehistoric	N/A	0.49-Mile (0.79 km)
LI2512	Archaeological Site	Unknown Prehistoric	N/A	0.55-Mile (0.89 km)
LI2513	Archaeological Site	Unknown Prehistoric	N/A	0.56-Mile (0.9 km)
LI2514	Archaeological Site	Unknown Prehistoric	N/A	0.54-Mile (0.87 km)
LI2515	Archaeological Site	Unknown Prehistoric	N/A	0.55-Mile (0.89 km)
LI2516	Archaeological Site	Unknown Prehistoric	N/A	0.57-Mile (0.92 km)
LI2517	Archaeological Site	Unknown Prehistoric	N/A	0.56-Mile (0.9 km)

Table 3. Previously recorded cultural resources within 1-mile (1.6 km) of the Project area.

OHI/OAI Number	Name of Resource	Date of Significance / Temporal	Address	Distance to Project Area
LI2518	Archaeological Site	Unknown	N/A	0.62-Mile
		Prehistoric		(1 km)
LI2519	Archaeological Site	Unknown	N/A	0.61-Mile
	-	Prehistoric		(0.98 km)
LI2499	Archaeological Site	Unknown Prehistoric	N/A	0.66-Mile (1.06 km)
LI2511	Archaeological Site	Unknown Prehistoric	N/A	0.90-Mile (1.44 km)
LI2457	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2456	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2455	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2453	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2452	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2458	Archaeological Site	Unknown Prehistoric	N/A	0.95-Mile (1.53 km)
LI2459	Archaeological Site	Unknown Prehistoric	N/A	0.95-Mile (1.53 km)
LI2481	Archaeological Site	Unknown Prehistoric	N/A	0.93-Mile (1.5 km)
LI2482	Archaeological Site	Unknown Prehistoric	N/A	0.82-Mile (1.32 km)
LI2504	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)
LI2473	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)
LI2486	Archaeological Site	Unknown Prehistoric	N/A	1 Mile (1.6 km)
LI2483	Archaeological Site	Unknown Prehistoric	N/A	0.99-Mile (1.6 km)
LI2469	Archaeological Site	Early Archaic	N/A	0.98-Mile (1.58 km)
LI2473	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)
LI2464	Archaeological Site	Early Archaic	N/A	0.96-Mile (1.54 km)
LI2474	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)

OHI/OAI Number	Name of Resource	Date of Significance / Temporal	Address	Distance to Project Area
LI2478	Archaeological Site	Unknown	N/A	0.95-Mile
		Prehistoric		(1.53 km)
LI2485	Archaeological Site	Unknown Prehistoric	N/A	0.95-Mile (1.53 km)
LI2504	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)
LI2498	Archaeological Site	Unknown Prehistoric	N/A	0.96-Mile (1.54 km)
LI2465	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LI2477	Archaeological Site	Unknown Prehistoric	N/A	0.84-Mile (1.35 km)
LI2475	Archaeological Site	Late Archaic	N/A	0.81-Mile (1.3 km)
LI2468	Archaeological Site	Unknown Prehistoric	N/A	0.79-Mile (1.27 km)
LI2502	Archaeological Site	Unknown Prehistoric	N/A	0.78-Mile (1.26 km)
LI2476	Archaeological Site	Unknown Prehistoric	N/A	0.76-Mile (1.22 km)
LI2466	Archaeological Site	Unknown Prehistoric	N/A	0.76-Mile (1.22 km)
LI2467	Archaeological Site	Unknown Prehistoric	N/A	0.76-Mile (1.22 km)
LI2484	Archaeological Site	Unknown Prehistoric	N/A	0.71-Mile (1.14 km)
LI2500	Archaeological Site	Early Archaic	N/A	0.73-Mile (1.17 km)
LI2505	Archaeological Site	Late Archaic	N/A	0.73-Mile (1.17 km)
LI2499	Archaeological Site	Unknown Prehistoric	N/A	0.66-Mile (1.06 km)
LI2454	Archaeological Site	Unknown Prehistoric	N/A	0.88-Mile (1.42 km)
LIC0160813	Foster Farmstead	c. 1880	3356 Clover Valley Road	0.74-Mile (1.19 km)
LIC0160913	MBJ Holdings House	1930	3445 Clover Valley Road	0.65-Mile (1.05 km)
LIC0160713	MCVGCM Holdings Farmstead	c. 1870	3704 Clover Valley Road	0.41-Mile (0.66 km)
LIC0160613	Klamfoth Farmstead	1870	4170 Clover Valley Road	36.9 meters (121 ft)

OHI/OAI Number	Name of Resource	Date of Significance / Temporal	Address	Distance to Project Area
LIC0160513	Juliana Charles House (Recently demolished)	c. 1900	4255 Clover Valley Road	0.18-Mile (0.29 km)
LIC0020713	Bevelhymer Russell Farm	1853	SWC Miller Rd & Mink St	0.99-Mile (1.6 km)

4.3 HISTORIC TOPOGRAPHIC MAPS AND AERIAL IMAGERY

Historical topographic maps and aerial photography revealed that the southern portion of the Project area has consistently been utilized for agriculture since the early twentieth century to present day (USGS 1902; USGS 1908; USGS 1955a; USGS 1955b; Nationwide Environmental title research [NETR] 2022a-d). In 1908, there are at least three residential compounds and the Meyers School located on either side of Miller Road NW (USGS 1908). Aerial photograph from the 1950's revealed a large farmstead consisting of one residence and at least five ancillary structures likely used for agricultural activities surrounded by farmland located south of Miller Road NW adjacent to the southernmost portion of the Project area (NETR 2022a). Another farmstead is located approximately 0.87-mile (1.39 km) east of the intersection of Beech Road NW and Miller Road NW. In the 1950's, this parcel of land was utilized for agricultural purposes with one rectangular residence and at least three rectangular storage facilities (NETR 2022a). A final farmstead consisting of at least three rectangular structures were located on the northeast corner of Miller Road NW and Beech Road NW (NETR 2022a). This facility was decommissioned by 1995 (NETR 2022d). Presently, the southern portion of the Project area is a mixture of agricultural fields and residential complexes.

The central portion of the Project area encompasses all structures adjacent to Beech Road NW and Johnstown Utica Road NW. The 1902 topographic maps revealed there were at least three structures located adjacent to Beach Road NW and four structures located Johnstown Utica Road (USGS 1902). By 1958, there was one farmstead consisting of two rectangular structures located west of the intersection of Beech Road NW and Miller Road NW, another farmstead consisting of at least three rectangular structures located adjacent to Johnstown Utica Road NW, another farmstead consisting of at least seven residential facilities located adjacent to Johnstown Utica Road NW (NETR 2022b). Presently, the central portion of the Project area remains mostly agricultural fields with some residential development that has continued to the present day.

The northern portion of the Project area has remained mostly agricultural fields with some farmsteads and residences located throughout the area. In 1902, there were two structures and a church located adjacent to South County Line Road (USGS 1902). Topographic maps also revealed that there was a structure located in the POD. By 1955, the number of structures was reduced to two and the structure located in the laydown yard was dismantled (USGS 1995b). By 1965, at least six residential structures were erected on the northern portion of the line, east of South County Road. Presently, there are numerous farmsteads and residential complexes located on either side of Tippet Road and South County Road.

5.0 SUMMARY AND RECOMMENDATIONS

The proposed Project is located just north of Columbus, within Delaware, Licking, and Franklin Counties, Ohio and will be approximately 4.15 miles (6.68 km) in length and will consist of the construction of a Point of Delivery (POD) Station with launcher/receiver facilities, a 12-inch diameter high pressure gas distribution pipeline, a district regulator station (DS), and one new customer regulator/meter station (GMB) at the Intel (customer) plant. The Project will allow NiSource to provide required natural gas for Intel's Dragonfly Project. The Project area is comprised of a 100-foot-wide survey corridor centered on the proposed pipeline alignment for 4.15 miles. The Project Study Area is comprised of a 100-foot-wide survey corridor centered on the proposed pipeline alignment for 4.15 miles. The Project is depicted on the *Jersey, New Albany, and Sunbury*, Ohio US Geological Survey (USGS) 7.5-minute topographic quadrangle maps.

A Cultural Resource Review was conducted for the referenced project. A desktop review, consisting of a compilation of known above-ground historic resources, archaeological sites, and previously conducted cultural resources surveys, was conducted. There are no above-ground historic structures and no archaeological sites within the Project area; however, there are fifty-five (55) additional previously recorded cultural resources within a 1-mile (1.6-km) radius. These results are depicted in **Appendix B**.

Based on the information provided and the results of this desktop assessment, it is CED's opinion that, due to ongoing road activities since at least the early 1990s, finding intact cultural deposits is at low probability within the majority of the Project area. However, due to previously recorded historic structures near the eastern workspace, there is a probability for intact cultural features within the workspace. CED respectfully submits these findings to NiSource for their information. This background review and assessment was conducted in support of NiSource's compliance with Section 106 of the NHPA.

6.0 REFERENCES

ODNR Division of Geological Survey (ONDR)

2022 ODNR Map Viewer. https://gis.ohiodnr.gov/website/dgs/geologyviewer/#, accessed November 2022.

Nationwide Environmental Title Research (NETR)

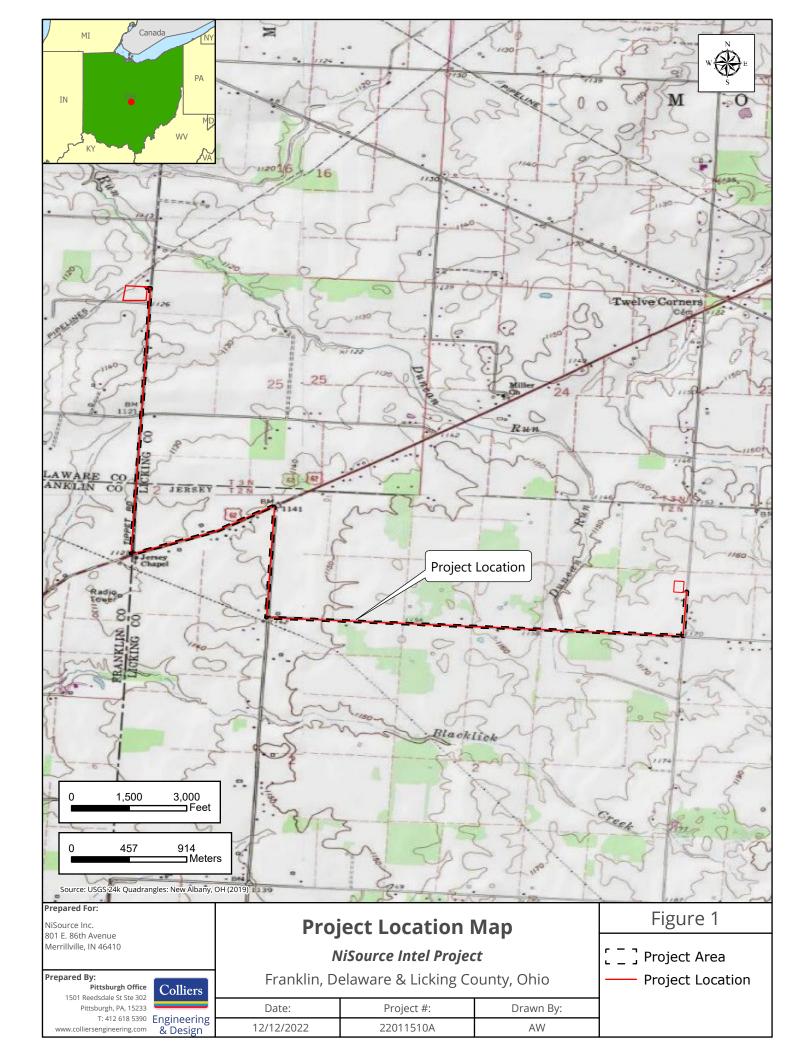
- 2022a 1953 Aerial Imagery. Available online: https://www.historicaerials.com/viewer, accessed November 2022.
- 2022b 1958 Aerial Imagery. Available online: https://www.historicaerials.com/viewer, accessed November 2022.
- 2022c 1965 Aerial Imagery. Available online: https://www.historicaerials.com/viewer, accessed November 2022.
- 2022d 1995 Aerial Imagery. Available online: https://www.historicaerials.com/viewer, accessed November 2022.

Natural Resources Conservation Service (NRCS)

2022 US Department of Agriculture, Natural Resources Conservation Services. Electronic document, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm, accessed November 2022.

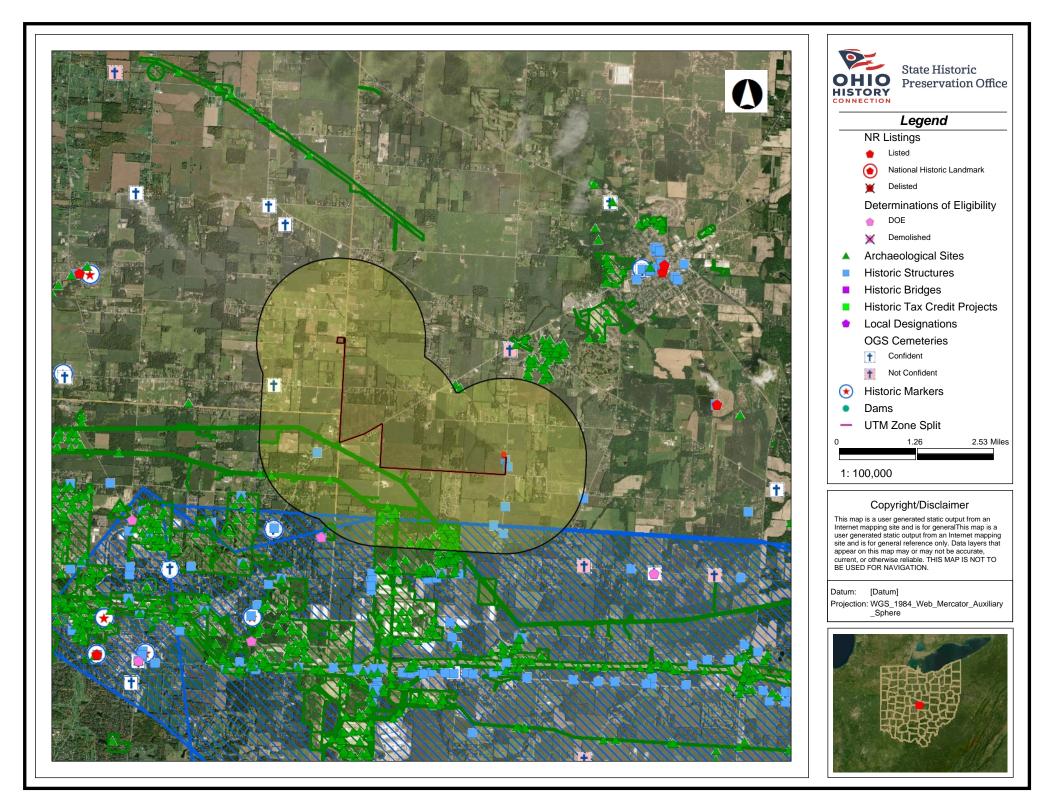
US Geological Survey (USGS)

- 1902 Topographic Map of Westerville, Ohio 1:62500. Available online: https://ngmdb.usgs.gov/topoview/, accessed November 2022.
- 1908 Topographic Map of Granville, Ohio 1:62500. Available online: https://ngmdb.usgs.gov/topoview/, accessed November 2022.
- 1955a Topographic Map of New Albany, Ohio 1:24000. Available online: https://ngmdb.usgs.gov/topoview/, accessed November 2022.
- 1955bTopographic Map of Sunbury, Ohio 1:24000. Available online: https://ngmdb.usgs.gov/topoview/, accessed November 2022.


Woods, Alan J., James M. Omernik, C. Scott Brockman, Timothy D. Gerber, William D. Hosteter, and Sandra H. Azevedo

1998 Ecoregions of Indiana and Ohio. (Poster)

https://store.usgs.gov/assets/MOD/StoreFiles/Ecoregion/21631_in_oh_front.pdf. accessed November 2022.



Appendix Appendix A | Project Location Map

Appendix B | Cultural Resources Background Map

Colliers Engineering & Design is a trusted provider of multi-discipline engineering, design and consulting services providing customized solutions for public and private clients through a network of offices nationwide.

For a full listing of our office locations, please visit colliersengineering.com

1 877 627 3772

Civil/Site • Traffic/Transportation • Governmental • Survey/Geospatial Infrastructure • Geotechnical/Environmental • Telecommunications • Utilities/Energy